The operational wind turbine efficiency in the power maximization regions and reliability improvement to reduce the produced power cost can both be enhanced by using an appropriate controller to cope with the highly nonlinear behavior of wind turbines in the presence of wind speed variation and actuator faults. In this regard, a nonlinear controller is proposed to make the wind turbine operate effectively despite some of the actuator faults, similar to the fault-free case. The considered actuator faults are pitch and generator actuator biases, as well as pitch actuator dynamic change, including pump wear, hydraulic leak, and high air content in the oil. Also, the wind speed is assumed to be an unmeasurable disturbance, and, accordingly, when using the neural network scheme, the unknown desired trajectory is reconstructed, so that the captured power is maximized. The proposed controller is shown to be able to keep the wind turbine tracking the reconstructed desired trajectory with sufficient accuracy. By using the Lyapunov analysis, the boundedness of the closed-loop system with the proposed controller is proven. The designed controller is verified via numerical simulations. The effectiveness of the proposed controller is evaluated in comparison with industrial constant gain controller results.

1.
P. F.
Odgaard
and
J.
Stoustrup
, “
A benchmark evaluation of fault tolerant wind turbine control concepts
,”
IEEE Trans. Control Syst. Technol.
23
(
3
),
1221
1228
(
2015
).
2.
J.
Lan
,
R. J.
Patton
, and
X.
Zhu
, “
Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation
,”
Renewable Energy
116
,
219
(
2018
).
3.
P.
Casau
,
P.
Rosa
,
S. M.
Tabatabaeipour
,
C.
Silvestre
, and
J.
Stoustrup
, “
A set-valued approach to FDI and FTC of wind turbines
,”
IEEE Trans. Control Syst. Technol.
23
(
1
),
245
263
(
2015
).
4.
R.
Tiwari
and
N. R.
Babu
, “
Recent developments of control strategies for wind energy conversion system
,”
Renewable Sustainable Energy Rev.
66
,
268
285
(
2016
).
5.
Z.
Gao
,
C.
Cecati
, and
S. X.
Ding
, “
A survey of fault diagnosis and fault-tolerant techniques-Part I: Fault diagnosis with model-based and signal-based approaches
,”
IEEE Trans. Ind. Electron.
62
(
6
),
3757
3767
(
2015
).
6.
H.
Habibi
,
H.
Rahimi Nohooji
, and
I.
Howard
, “
Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control
,”
Front. Mech. Eng.
12
(
3
),
377
388
(
2017
).
7.
C.
Sloth
,
T.
Esbensen
, and
J.
Stoustrup
, “
Robust and fault-tolerant linear parameter-varying control of wind turbines
,”
Mechatronics
21
(
4
),
645
659
(
2011
).
8.
H.
Habibi
,
I.
Howard
, and
R.
Habibi
, “
Bayesian Sensor Fault Detection in a Markov Jump System
,”
Asian J. Control
19
(
4
),
1465
1481
(
2017
).
9.
P. F.
Odgaard
,
J.
Stoustrup
, and
M.
Kinnaert
, “
Fault tolerant control of wind turbine—A benchmark model
,” in
Fault Detection, Supervision and Safety of Technical Processes
(
2009
), Vol. 42, pp.
155
160
.
10.
F. D.
Bianchi
,
H.
De Battista
, and
R. J.
Mantz
,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
(
Springer Science & Business Media
,
2006
).
11.
F.
Shi
and
R.
Patton
, “
An active fault tolerant control approach to an offshore wind turbine model
,”
Renewable Energy
75
,
788
798
(
2015
).
12.
S. M.
Tabatabaeipour
,
P. F.
Odgaard
,
T.
Bak
, and
J.
Stoustrup
, “
Fault detection of wind turbines with uncertain parameters: A set-membership approach
,”
Energies
5
(
7
),
2424
2448
(
2012
).
13.
H.
Sanchez
,
T.
Escobet
,
V.
Puig
, and
P. F.
Odgaard
, “
Fault diagnosis of an advanced wind turbine benchmark using interval-based ARRs and observers
,”
IEEE Trans. Ind. Electron.
62
(
6
),
3783
3793
(
2015
).
14.
X.
Wei
,
M.
Verhaegen
, and
T.
van Engelen
, “
Sensor fault detection and isolation for wind turbines based on subspace identification and Kalman filter techniques
,”
Int. J. Adapt. Control
24
(
8
),
687
707
(
2010
).
15.
X.
Wei
and
M.
Verhaegen
, “
Sensor and actuator fault diagnosis for wind turbine systems by using robust observer and filter
,”
WiEn
14
(
4
),
491
516
(
2011
).
16.
H.
Badihi
,
Y.
Zhang
, and
H.
Hong
, “
Fuzzy gain-scheduled active fault-tolerant control of a wind turbine
,”
J. Franklin Inst.
351
(
7
),
3677
3706
(
2014
).
17.
S.
Sabzevari
,
A.
Karimpour
,
M.
Monfared
, and
M. B.
Naghibi Sistani
, “
MPPT control of wind turbines by direct adaptive fuzzy-PI controller and using ANN-PSO wind speed estimator
,”
J. Renewable Sustainable Energy
9
(
1
),
013302
(
2017
).
18.
S.
Simani
, “
Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems
,”
Energies
8
(
12
),
13395
13418
(
2015
).
19.
H.
Habibi
,
A. Y.
Koma
, and
A.
Sharifian
, “
Power and velocity control of wind turbines by adaptive fuzzy controller during full load operation
,”
Iran. J. Fuzzy Syst.
13
(
3
),
35
48
(
2016
), http://ijfs.usb.ac.ir/article_2428_0.html.
20.
H.
Habibi
,
A. Y.
Koma
, and
I.
Howard
, “
Power Improvement of Non-Linear Wind Turbines during Partial Load Operation using Fuzzy Inference Control
,”
Control Eng. Appl. Inf.
19
(
2
),
31
42
(
2017
), http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=4296.
21.
Y.
Song
,
Z.
Zhang
,
P.
Li
,
W.
Wang
, and
M.
Qin
, “
Robust adaptive variable speed control of wind power systems without wind speed measurement
,”
J. Renewable Sustainable Energy
5
(
6
),
063115
(
2013
).
22.
B.
Boukhezzar
and
H.
Siguerdidjane
, “
Nonlinear control of a variable-speed wind turbine using a two-mass model
,”
IEEE Trans. Energy Convers.
26
(
1
),
149
162
(
2011
).
23.
K. Z.
Østergaard
,
P.
Brath
, and
J.
Stoustrup
, “
Estimation of effective wind speed
,”
J. Phys.: Conf. Ser.
75
,
012082
(
2007
).
24.
H.
Jafarnejadsani
,
J.
Pieper
, and
J.
Ehlers
, “
Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network
,”
IEEE Trans. Control Syst. Technol.
21
(
6
),
2264
2272
(
2013
).
25.
P. F.
Odgaard
,
J.
Stoustrup
, and
M.
Kinnaert
, “
Fault-tolerant control of wind turbines: A benchmark model
,”
IEEE Trans. Control Syst. Technol.
21
(
4
),
1168
1182
(
2013
).
26.
S.
Heier
,
Grid Integration of Wind Energy Conversion Systems
(
Wiley
,
1998
).
27.
H.
Badihi
,
Y.
Zhang
, and
H.
Hong
, “
Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults
,”
IEEE Trans. Control Syst. Technol.
23
(
4
),
1351
1372
(
2015
).
28.
D.
Liu
,
J.
Guo
,
Y.
Huang
, and
W.
Wang
, “
An active power control strategy for wind farm based on predictions of wind turbine's maximum generation capacity
,”
J. Renewable Sustainable Energy
5
(
1
),
013121
(
2013
).
29.
S. S.
Ge
and
C.
Wang
, “
Adaptive neural control of uncertain MIMO nonlinear systems
,”
IEEE Trans. Neural Network Learn. Syst.
15
(
3
),
674
692
(
2004
).
30.
Y.
Song
and
J.
Guo
, “
Neuro-Adaptive Fault-Tolerant Tracking Control of Lagrange Systems Pursuing Targets With Unknown Trajectory
,”
IEEE Trans. Ind. Electron.
64
(
5
),
3913
3920
(
2017
).
31.
B.
Ren
,
S. S.
Ge
,
K. P.
Tee
, and
T. H.
Lee
, “
Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function
,”
IEEE T. Neural Network
21
(
8
),
1339
1345
(
2010
).
32.
H.
Schulte
and
E.
Gauterin
, “
Fault-tolerant control of wind turbines with hydrostatic transmission using Takagi–Sugeno and sliding mode techniques
,”
Annu. Rev. Control
40
,
82
92
(
2015
).
You do not currently have access to this content.