The development and synthesis of novel dye sensitizers are important for improving the power conversion efficiency of dye-sensitized solar cells (DSSCs) in terms of the role of dye sensitizers in photon to electricity energy conversion processes. How the different moieties tune the electronic structures and related properties is the fundamental issue in designing dye sensitizers. Here, the geometries, electronic structures, excitation properties, and free energy variations for electron injection (EI) and dye regeneration (DR) of porphyrin dye sensitizers SM315, GY50, FA, and KS, containing bulky bis(2′,4′-bis(hexyloxy)-[1,1′-biphenyl]-4-yl)amine, diarylamino group with two hexyl chains, quinolizinoacridine, and triazatruxene as electron donors, respectively, were investigated. The Q bands absorption spectra of FA and KS exhibit a blue-shift relative to those of SM315 and GY50, resulting from weak conjugation effects. The transition configurations and molecular orbital analysis suggest that the electron donors in these dyes are effective chromophores for photon-induced EI in DSSCs. The torsion angle between the electron-donor and the conjugation-bridge has significant effects on electronic structures, excited states, charge transfer (CT) properties, and free energy variations for EI and DR. The transferred charges and CT distances demonstrate that quinolizinoacridine in FA is the most prominent electron donor moiety among these porphyrin dyes.

1.
F.
Bella
,
C.
Gerbaldi
,
C.
Barolo
, and
M.
Gratzel
, “
Aqueous dye-sensitized solar cells
,”
Chem. Soc. Rev.
44
,
3431
3473
(
2015
).
2.
M.
Pazoki
,
U. B.
Cappel
,
E. M. J.
Johansson
,
A.
Hagfeldt
, and
G.
Boschloo
, “
Characterization techniques for dye-sensitized solar cells
,”
Energy Environ. Sci.
10
,
672
709
(
2017
).
3.
A.
Hagfeldt
,
G.
Boschloo
,
L. C.
Sun
,
L.
Kloo
, and
H.
Pettersson
, “
Dye-sensitized solar cells
,”
Chem. Rev.
110
,
6595
6663
(
2010
).
4.
M. K.
Nazeeruddin
,
E.
Baranoff
, and
M.
Gratzel
, “
Dye-sensitized solar cells: A brief overview
,”
Sol. Energy
85
,
1172
1178
(
2011
).
5.
S.
Thomas
,
T. G.
Deepak
,
G. S.
Anjusree
,
T. A.
Arun
,
S. V.
Nair
, and
A. S.
Nair
, “
A review on counter electrode materials in dye-sensitized solar cells
,”
J. Mater. Chem. A
2
,
4474
4490
(
2014
).
6.
G.
Boschloo
and
A.
Hagfeldt
, “
Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells
,”
Acc. Chem. Res.
42
,
1819
1826
(
2009
).
7.
S. M.
Zakeeruddin
and
M.
Gratzel
, “
Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells
,”
Adv. Funct. Mater.
19
,
2187
2202
(
2009
).
8.
J. H.
Wu
,
Z.
Lan
,
J. M.
Lin
,
M. L.
Huang
,
Y. F.
Huang
,
L. Q.
Fan
, and
G. G.
Luo
, “
Electrolytes in dye-sensitized solar cells
,”
Chem. Rev.
115
,
2136
2173
(
2015
).
9.
M. K.
Nazeeruddin
,
P.
Péchy
,
T.
Renouard
,
S. M.
Zakeeruddin
,
R.
Humphry-Baker
,
P.
Comte
,
P.
Liska
,
L.
Cevey
,
E.
Costa
,
V.
Shklover
,
L.
Spiccia
,
G. B.
Deacon
,
C. A.
Bignozzi
, and
M.
Grätzel
, “
Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells
,”
J. Am. Chem. Soc.
123
,
1613
1624
(
2001
).
10.
M. K.
Nazeeruddin
,
F.
De Angelis
,
S.
Fantacci
,
A.
Selloni
,
G.
Viscardi
,
P.
Liska
,
S.
Ito
,
B.
Takeru
, and
M.
Gratzel
, “
Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers
,”
J. Am. Chem. Soc.
127
,
16835
16847
(
2005
).
11.
F.
Gao
,
Y.
Wang
,
J.
Zhang
,
D.
Shi
,
M.
Wang
,
R.
Humphry-Baker
,
P.
Wang
,
S. M.
Zakeeruddin
, and
M.
Gratzel
, “
A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell
,”
Chem. Commun.
0
,
2635
2637
(
2008
).
12.
J. W.
Chen
and
Y.
Cao
, “
Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices
,”
Acc. Chem. Res.
42
,
1709
1718
(
2009
).
13.
Z.
Yao
,
M.
Zhang
,
R.
Li
,
L.
Yang
,
Y.
Qiao
, and
P.
Wang
, “
A metal-free N-annulated thienocyclopentaperylene dye: Power conversion efficiency of 12% for dye-sensitized solar cells
,”
Angew. Chem. Int. Ed. Engl.
54
,
5994
5998
(
2015
).
14.
K.
Kakiage
,
Y.
Aoyama
,
T.
Yano
,
T.
Otsuka
,
T.
Kyomen
,
M.
Unno
, and
M.
Hanaya
, “
An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell
,”
Chem. Commun.
50
,
6379
6381
(
2014
).
15.
A.
Yella
,
H. W.
Lee
,
H. N.
Tsao
,
C. Y.
Yi
,
A. K.
Chandiran
,
M. K.
Nazeeruddin
,
E. W. G.
Diau
,
C. Y.
Yeh
,
S. M.
Zakeeruddin
, and
M.
Gratzel
, “
Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency
,”
Science
334
,
629
634
(
2011
).
16.
S.
Mathew
,
A.
Yella
,
P.
Gao
,
R.
Humphry-Baker
,
B. F.
Curchod
,
N.
Ashari-Astani
,
I.
Tavernelli
,
U.
Rothlisberger
,
M. K.
Nazeeruddin
, and
M.
Gratzel
, “
Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers
,”
Nat. Chem.
6
,
242
247
(
2014
).
17.
A. L. A.
Parussulo
,
B. A.
Iglesias
,
H. E.
Toma
, and
K.
Araki
, “
Sevenfold enhancement on porphyrin dye efficiency by coordination of ruthenium polypyridine complexes
,”
Chem. Commun.
48
,
6939
6941
(
2012
).
18.
C.-H.
Wu
,
T.-Y.
Pan
,
S.-H.
Hong
,
C.-L.
Wang
,
H.-H.
Kuo
,
Y.-Y.
Chu
,
E. W.-G.
Diau
, and
C.-Y.
Lin
, “
A fluorene-modified porphyrin for efficient dye-sensitized solar cells
,”
Chem. Commun.
48
,
4329
4331
(
2012
).
19.
T.
Higashino
and
H.
Imahori
, “
Porphyrins as excellent dyes for dye-sensitized solar cells: Recent developments and insights
,”
Dalton Trans.
44
,
448
463
(
2015
).
20.
L.-L.
Li
and
E. W.-G.
Diau
, “
Porphyrin-sensitized solar cells
,”
Chem. Soc. Rev.
42
,
291
304
(
2013
).
21.
T.
Bessho
,
S. M.
Zakeeruddin
,
C. Y.
Yeh
,
E. W.
Diau
, and
M.
Gratzel
, “
Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins
,”
Angew. Chem. Int. Ed. Engl.
49
,
6646
6649
(
2010
).
22.
M.
Ishida
,
S. W.
Park
,
D.
Hwang
,
Y. B.
Koo
,
J. L.
Sessler
,
D. Y.
Kim
, and
D.
Kim
, “
Donor-substituted β-functionalized porphyrin dyes on hierarchically structured mesoporous TiO2 spheres. Highly efficient dye-sensitized solar cells
,”
J. Phys. Chem. C
115
,
19343
19354
(
2011
).
23.
C. M.
Ip
and
A.
Troisi
, “
Does the donor-π-acceptor character of dyes improve the efficiency of dye-sensitized solar cells?
,”
J. Phys. Chem. Lett.
7
,
2989
2993
(
2016
).
24.
B.
Liu
,
W.
Zhu
,
Y.
Wang
,
W.
Wu
,
X.
Li
,
B.
Chen
,
Y.-T.
Long
, and
Y.
Xie
, “
Modulation of energy levels by donor groups: An effective approach for optimizing the efficiency of zinc-porphyrin based solar cells
,”
J. Mater. Chem.
22
,
7434
7444
(
2012
).
25.
C. L.
Wang
,
Y. C.
Chang
,
C. M.
Lan
,
C. F.
Lo
,
E. W. G.
Diau
, and
C. Y.
Lin
, “
Enhanced light harvesting with pi-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells
,”
Energy Environ. Sci.
4
,
1788
1795
(
2011
).
26.
X.-Y.
Li
,
C.-R.
Zhang
,
L.-H.
Yuan
,
M.-L.
Zhang
,
Y.-H.
Chen
, and
Z.-J.
Liu
, “
A comparative study of porphyrin dye sensitizers YD2-o-C8, SM315 and SM371 for solar cells: The electronic structures and excitation-related properties
,”
Eur. Phys. J. D
70
,
211
(
2016
).
27.
A.
Yella
,
C. L.
Mai
,
S. M.
Zakeeruddin
,
S. N.
Chang
,
C. H.
Hsieh
,
C. Y.
Yeh
, and
M.
Gratzel
, “
Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: The role of benzene spacers
,”
Angew. Chem. Int. Ed. Engl.
53
,
2973
2977
(
2014
).
28.
P.
Qin
,
P.
Sanghyun
,
M. I.
Dar
,
K.
Rakstys
,
H.
ElBatal
,
S. A.
Al-Muhtaseb
,
C.
Ludwig
, and
M. K.
Nazeeruddin
, “
Weakly conjugated hybrid zinc porphyrin sensitizers for solid-state dye-sensitized solar cells
,”
Adv. Funct. Mater.
26
,
5550
5559
(
2016
).
29.
M.-G.
Ju
and
W.
Liang
, “
Computational insight on the working principles of zinc porphyrin dye-sensitized solar cells
,”
J. Phys. Chem. C
117
,
14899
14911
(
2013
).
30.
W. R.
Duncan
,
C. F.
Craig
, and
O. V.
Prezhdo
, “
Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2
,”
J. Am. Chem. Soc.
129
,
8528
8543
(
2007
).
31.
Y.
Zhang
,
C.-R.
Zhang
,
W.
Wang
,
J.-J.
Gong
,
Z.-J.
Liu
, and
H.-S.
Chen
, “
Density functional theory study of α-cyanoacrylic acid adsorbed on rutile TiO2(110) surface
,”
Comput. Theor. Chem.
1095
,
125
133
(
2016
).
32.
J.-G.
Ma
,
C.-R.
Zhang
,
J.-J.
Gong
,
B.
Yang
,
H.-M.
Zhang
,
W.
Wang
,
Y.-Z.
Wu
,
Y.-H.
Chen
, and
H.-S.
Chen
, “
The adsorption of α-cyanoacrylic acid on anatase TiO2 (101) and (001) surfaces: A density functional theory study
,”
J. Chem. Phys.
141
,
234705
(
2014
).
33.
F.
Ambrosio
,
N.
Martsinovich
, and
A.
Troisi
, “
What is the best anchoring group for a dye in a dye-sensitized solar cell?
,”
J. Phys. Chem. Lett.
3
,
1531
1535
(
2012
).
34.
J. N.
Clifford
,
E.
Martinez-Ferrero
,
A.
Viterisi
, and
E.
Palomares
, “
Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells
,”
Chem. Soc. Rev.
40
,
1635
1646
(
2011
).
35.
W.-L.
Ding
,
D.-M.
Wang
,
Z.-Y.
Geng
,
X.-L.
Zhao
, and
W.-B.
Xu
, “
Density functional theory characterization and verification of high-performance indoline dyes with D–A–π–A architecture for dye-sensitized solar cells
,”
Dyes Pigm.
98
,
125
135
(
2013
).
36.
X.
Gu
and
Q.
Sun
, “
Computational study of porphyrin-based dyes with better performance
,”
Phys. Chem. Chem. Phys.
15
,
15434
15440
(
2013
).
37.
M.
Guo
,
M.
Li
,
Y.
Dai
,
W.
Shen
,
J.
Peng
,
C.
Zhu
,
S. H.
Lin
, and
R.
He
, “
Exploring the role of varied-length spacers in charge transfer: A theoretical investigation on pyrimidine-bridged porphyrin dyes
,”
RSC Adv.
3
,
17515
(
2013
).
38.
K. B.
Ornso
,
C. S.
Pedersen
,
J. M.
Garcia-Lastra
, and
K. S.
Thygesen
, “
Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations
,”
Phys. Chem. Chem. Phys.
16
,
16246
16254
(
2014
).
39.
Y.
Li
,
B.
Xu
,
P.
Song
,
F.
Ma
, and
M.
Sun
, “
D–A−π–A system: Light harvesting, charge transfer, and molecular designing
,”
J. Phys. Chem. C
121
,
12546
12561
(
2017
).
40.
F.
Arkan
,
M.
Izadyar
, and
A.
Nakhaeipour
, “
Improvement in charge transfer dynamic of the porphyrin-based solar cells in water: A theoretical study
,”
J. Renewable Sustainable Energy
9
,
023502
(
2017
).
41.
S.
Kar
,
J. K.
Roy
, and
J.
Leszczynski
, “
In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future
,”
npj Comput. Mater.
3
,
22
(
2017
).
42.
S.-J.
Moon
,
E.
Baranoff
,
S. M.
Zakeeruddin
,
C.-Y.
Yeh
,
E. W.-G.
Diau
,
M.
Gratzel
, and
K.
Sivula
, “
Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye
,”
Chem. Commun.
47
,
8244
8246
(
2011
).
43.
C. Y.
Yi
,
F.
Giordano
,
N. L.
Cevey-Ha
,
H. N.
Tsao
,
S. M.
Zakeeruddin
, and
M.
Gratzel
, “
Influence of structural variations in push-pull zinc porphyrins on photovoltaic performance of dye-sensitized solar cells
,”
ChemSusChem
7
,
1107
1113
(
2014
).
44.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
45.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
46.
R.
Bauernschmitt
and
R.
Ahlrichs
, “
Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory
,”
Chem. Phys. Lett.
256
,
454
464
(
1996
).
47.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules
,”
J. Chem. Phys.
109
,
8218
8224
(
1998
).
48.
G.
Scalmani
,
M. J.
Frisch
,
B.
Mennucci
,
J.
Tomasi
,
R.
Cammi
, and
V.
Barone
, “
Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model
,”
J. Chem. Phys.
124
,
94107
(
2006
).
49.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
50.
C.
Bernini
,
L.
Zani
,
M.
Calamante
,
G.
Reginato
,
A.
Mordini
,
M.
Taddei
,
R.
Basosi
, and
A.
Sinicropi
, “
Excited state geometries and vertical emission energies of solvated dyes for DSSC: A PCM/TD-DFT benchmark study
,”
J. Chem. Theory Comput.
10
,
3925
3933
(
2014
).
51.
C.-R.
Zhang
,
L.
Liu
,
J.-W.
Zhe
,
N.-Z.
Jin
,
L.-H.
Yuan
,
Y.-H.
Chen
,
Z.-Q.
Wei
,
Y.-Z.
Wu
,
Z.-J.
Liu
, and
H.-S.
Chen
, “
Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells
,”
J. Mol. Model.
19
,
1553
1563
(
2013
).
52.
J. S.
High
,
K. A.
Virgil
, and
E.
Jakubikova
, “
Electronic structure and absorption properties of strongly coupled porphyrin–perylene arrays
,”
J. Phys. Chem. A
119
,
9879
9888
(
2015
).
53.
X.-Y.
Li
,
C.-R.
Zhang
,
Y.-Z.
Wu
,
H.-M.
Zhang
,
W.
Wang
,
L.-H.
Yuan
,
H.
Yang
,
Z.-J.
Liu
, and
H.-S.
Chen
, “
The role of porphyrin-free-base in the electronic structures and related properties of N-fused carbazole-zinc porphyrin dye sensitizers
,”
Int. J. Mol. Sci.
16
,
27707
27720
(
2015
).
54.
C.-R.
Zhang
,
L.-H.
Han
,
J.-W.
Zhe
,
N.-Z.
Jin
,
Y.-L.
Shen
,
J.-J.
Gong
,
H.-M.
Zhang
,
Y.-H.
Chen
, and
Z.-J.
Liu
, “
The role of terminal groups in electronic structures and related properties: The case of push–pull porphyrin dye sensitizers for solar cells
,”
Comput. Theor. Chem.
1039
,
62
70
(
2014
).
55.
L.-H.
Han
,
C.-R.
Zhang
,
J.-W.
Zhe
,
N.-Z.
Jin
,
Y.-L.
Shen
,
W.
Wang
,
J.-J.
Gong
,
Y.-H.
Chen
, and
Z.-J.
Liu
, “
Understanding the electronic structures and absorption properties of porphyrin sensitizers YD2 and YD2-o-C8 for dye-sensitized solar cells
,”
Int. J. Mol. Sci.
14
,
20171
20188
(
2013
).
56.
D.
Jacquemin
,
E. A.
Perpeète
,
I.
Ciofini
, and
C.
Adamo
, “
Accurate simulation of optical properties in dyes
,”
Acc. Chem. Res.
42
,
326
334
(
2009
).
57.
M.
Pastore
,
E.
Mosconi
,
F.
De Angelis
, and
M.
Grätzel
, “
A computational investigation of organic dyes for dye-sensitized solar cells: Benchmark, strategies, and open issues
,”
J. Phys. Chem. C
114
,
7205
7212
(
2010
).
58.
V.
Barone
and
M.
Cossi
, “
Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model
,”
J. Phys. Chem. A
102
,
1995
2001
(
1998
).
59.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian 09. Revision B.01
(
Gaussian, Inc
.,
Wallingford, CT
,
2010
).
60.
T.
Lu
and
F.
Chen
, “
Calculation of molecular orbital composition
,”
Acta Chim. Sin.
69
,
2393
2406
(
2011
).
61.
R. A.
Marcus
, “
Electron transfer reactions in chemistry. Theory and experiment
,”
Rev. Mod. Phys.
65
,
599
610
(
1993
).
62.
J.
Preat
,
C.
Michaux
,
D.
Jacquemin
, and
E. A.
Perpeète
, “
Enhanced efficiency of organic dye-sensitized solar cells: Triphenylamine derivatives
,”
J. Phys. Chem. C
113
,
16821
16833
(
2009
).
63.
C.-R.
Zhang
,
J.-G.
Ma
,
J.-W.
Zhe
,
N.-Z.
Jin
,
Y.-L.
Shen
,
Y.-Z.
Wu
,
Y.-H.
Chen
,
Z.-J.
Liu
, and
H.-S.
Chen
, “
The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives
,”
Spectrochim. Acta, Part A
150
,
855
866
(
2015
).
64.
J. B.
Asbury
,
Y.-Q.
Wang
,
E.
Hao
,
H. N.
Ghosh
, and
T.
Lian
, “
Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films
,”
Res. Chem. Intermed.
27
,
393
406
(
2001
).
65.
B.
Xu
,
Y.
Li
,
P.
Song
,
F.
Ma
, and
M.
Sun
, “
Photoactive layer based on T-shaped benzimidazole dyes used for solar cell: From photoelectric properties to molecular design
,”
Sci. Rep.
7
,
45688
(
2017
).
66.
C.-R.
Zhang
,
L.
Liu
,
Z.-J.
Liu
,
Y.-L.
Shen
,
Y.-T.
Sun
,
Y.-Z.
Wu
,
Y.-H.
Chen
,
L.-H.
Yuan
,
W.
Wang
, and
H.-S.
Chen
, “
Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: A theoretical approach
,”
J. Mol. Graphics Modell.
38
,
419
429
(
2012
).
67.
C. R.
Zhang
,
X. Y.
Li
,
Y. L.
Shen
,
Y. Z.
Wu
,
Z. J.
Liu
, and
H. S.
Chen
, “
Molecular docking toward panchromatic dye sensitizers for solar cells based upon tetraazulenylporphyrin and tetraanthracenylporphyrin
,”
J. Phys. Chem. A
121
,
2655
2664
(
2017
).
68.
D.
Jacquemin
,
V.
Wathelet
,
E. A.
Perpete
, and
C.
Adamo
, “
Extensive TD-DFT benchmark: Singlet-excited states of organic molecules
,”
J. Chem. Theory Comput.
5
,
2420
2435
(
2009
).
69.
J. B.
Yang
,
P.
Ganesan
,
J.
Teuscher
,
T.
Moehl
,
Y. J.
Kim
,
C. Y.
Yi
,
P.
Comte
,
K.
Pei
,
T. W.
Holcombe
,
M. K.
Nazeeruddin
,
J. L.
Hua
,
S. M.
Zakeeruddin
,
H.
Tian
, and
M.
Gratzel
, “
Influence of the donor size in D-pi-A organic dyes for dye-sensitized solar cells
,”
J. Am. Chem. Soc.
136
,
5722
5730
(
2014
).
70.
K.
Kalyanasundaram
and
M.
Grätzel
, “
Applications of functionalized transition metal complexes in photonic and optoelectronic devices
,”
Coord. Chem. Rev.
177
,
347
414
(
1998
).

Supplementary Material

You do not currently have access to this content.