This paper studied the payback period of grid-connected photovoltaic (PV) panels by the net present value method. The PV performance data were acquired by on-site measurements of two rooftop projects in subtropical Hong Kong. The sensitivity of various variables to the payback period was evaluated by the Extended Fourier Amplitude Sensitivity Test. The monetary payback periods were evaluated at different values of the most relevant variables and compared with the embodied energy and greenhouse gas payback periods. The PV panels of the two projects produced 122–143 kWh/m2 electricity per year in Hong Kong, which saved 139–163 HKD electricity tariff per square meter per year. The sensitivity analysis showed that the monetary payback period was sensitive to the initial cost and tariff increase rate uncertainties. The PV monetary payback period varied from 13.4 to 16.8 years at different tariff increase rates and investment costs, based on the current carbon trading benefit. The monetary payback period was much greater than the embodied energy and greenhouse gas payback periods, which were 10.8–12.7 years and 5.3–6.2 years, respectively. Implications of the payback period differences were discussed.

1.
Akinyele
,
D. O.
, “
Environmental performance evaluation of a grid-independent solar photovoltaic power generation (SPPG) plant
,”
Energy
130
,
515
529
(
2017
).
2.
Akinyele
,
D. O.
and
Rayudu
,
R. K.
, “
Community-based hybrid electricity supply system: A practical and comparative approach
,”
Appl. Energy
171
,
608
628
(
2016a
).
3.
Akinyele
,
D. O.
and
Rayudu
,
R. K.
, “
Strategy for developing energy systems for remote communities: Insights to best practices and sustainability
,”
Sustainable Energy Technol. Assess.
16
,
106
127
(
2016b
).
4.
Akinyele
,
D. O.
and
Rayudu
,
R. K.
, “
Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries
,”
Energy
109
,
160
179
(
2016c
).
5.
Alsema
,
E. A.
and
de Wild-Scholten
,
M. J.
Environmental impacts of crystalline silicon photovoltaic module production
,” in
The 13th CIRP International Conference on Life Cycle Engineering, Leuven
(
2006
).
6.
Barbose
,
G.
,
Darghouth
,
N.
,
Millstein
,
D.
,
Spears
,
M.
, and
Wiser
,
R.
,
Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States
(
Lawrence Berkeley National Laboratory
,
2015
).
7.
Battisti
,
R.
and
Corrado
,
A.
, “
Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology
,”
Energy
30
,
952
967
(
2005
).
8.
Bhakta
,
S.
,
Mukherjee
,
V.
, and
Shaw
,
B.
, “
Techno-economic analysis of standalone photovoltaic/wind hybrid system for application in isolated hamlets of North-East India
,”
J. Renewable Sustainable Energy
7
,
023126
(
2015
).
9.
Cen.Stat.Dep.HKSAR.
,
Annual Report on the Consumer Price Index 2013
(
Census and Statistics Department HKSAR
,
Hong Kong
,
2014
).
10.
CLP
,
Annual Report
(
CLP
,
Hong Kong
,
2015a
).
11.
CLP
,
Sustainability Report
(
CLP
,
Hong Kong
,
2015b
).
12.
Cukier
,
R. I.
,
Fortuin
,
C. M.
,
Shuler
,
K. E.
,
Petschek
,
A. G.
, and
Schaibly
,
J. H.
, “
Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory
,”
J. Chem. Phys.
59
,
3873
3878
(
1973
).
13.
Cukier
,
R. I.
,
Levine
,
H. B.
, and
Shuler
,
K. E.
, “
Nonlinear sensitivity analysis of multiparameter model systems
,”
J. Comput. Phys.
26
,
1
42
(
1978
).
14.
Deeney
,
P.
,
Cummins
,
M.
,
Dowling
,
M.
, and
Smeaton
,
A. F.
, “
Influences from the European Parliament on EU emissions prices
,”
Energy Policy
88
,
561
572
(
2016
).
15.
Ekström
,
P. A.
,
Ekios: A Simulation Toolbox for Sensitivity Analysis
(
Uppsala University
,
Sweden
,
2005
).
16.
EMSD
,
Consultancy Study on Life Cycle Energy Analysis of Building Construction - Final Report
(
EMSD
,
Hong Kong
,
2006
).
17.
EMSD
,
An Introduction to Life Cycle Energy Assessment (LCEA) of Building Developments
(
EMSD
,
Hong Kong
,
2007
).
18.
EMSD
,
Energy Utilization Indexes and Benchmarks for Residential, Commercial and Transport Sectors
(
Electrical and Mechanical Services Department
,
2016
).
19.
Environment Bureau
,
Energy Saving Plan for Hong Kong's Built Environment 2015-2025+
(
Environment Bureau
,
Hong Kong
,
2015
).
20.
Geem
,
Z. W.
, “
Size optimization for a hybrid photovoltaic–wind energy system
,”
Int. J. Electr. Power Energy Syst.
42
,
448
451
(
2012
).
21.
Hasanuzzaman
,
M.
,
Al-Amin
,
A. Q.
,
Khanam
,
S.
, and
Hosenuzzaman
,
M.
, “
Photovoltaic power generation and its economic and environmental future in Bangladesh
,”
J. Renewable Sustainable Energy
7
,
013108
(
2015
).
22.
Hennecke
,
A. M.
,
Faist
,
M.
,
Reinhardt
,
J.
,
Junquera
,
V.
,
Neeft
,
J.
, and
Fehrenbach
,
H.
, “
Biofuel greenhouse gas calculations under the European renewable energy directive—A comparison of the BioGrace tool vs. the tool of the roundtable on sustainable biofuels
,”
Appl. Energy
102
,
55
62
(
2013
).
23.
HKMA
,
Annual Report
(
Hong Kong Monetary Authority
,
Hong Kong
,
2016
).
24.
Islam
,
M. R.
,
Mekhilef
,
S.
, and
Saidur
,
R.
, “
Progress and recent trends of wind energy technology
,”
Renewable Sustainable Energy Rev.
21
,
456
468
(
2013
).
25.
Jordan
,
D. C.
and
Kurtz
,
S. R.
, “
Photovoltaic degradation rates—an analytical review
,”
Prog. Photovoltaics Res. Appl.
21
,
12
29
(
2013
).
26.
Koch
,
N.
,
Fuss
,
S.
,
Godefroy
,
G.
, and
Edenhofer
,
O.
, “
Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence
,”
Energy Policy
73
,
676
685
(
2014
).
27.
Kolokotsa Kolhe
,
M.
,
Kolhe
,
S.
, and
Joshi
,
J. C.
, “
Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India
,”
Energy Econ.
24
,
155
165
(
2002
).
28.
Laleman
,
R.
,
Albrecht
,
J.
, and
Dewulf
,
J.
, “
Life cycle analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation
,”
Renewable Sustainable Energy Rev.
15
,
267
281
(
2011
).
29.
Lam
,
J. C.
and
Li
,
D. H. W.
, “
Correlation between global solar radiation and its direct and diffuse components
,”
Build. Environ.
31
,
527
535
(
1996
).
30.
Li
,
D. H. W.
,
Cheung
,
K. L.
,
Lam
,
T. N. T.
, and
Chan
,
W.
, “
A study of grid-connected photovoltaic (PV) system in Hong Kong
,”
Appl. Energy
90
,
122
127
(
2012
).
31.
Li
,
D. H. W.
,
Chow
,
S. K. H.
, and
Lee
,
E. W. M.
, “
An analysis of a medium size grid-connected building integrated photovoltaic (BIPV) system using measured data
,”
Energy Build.
60
,
383
387
(
2013a
).
32.
Li
,
D. H. W.
and
Lam
,
T. N. T.
, “
Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data
,”
Int. J. Photoenergy
2007
,
85402
.
33.
Li
,
D. H. W.
,
Lou
,
S. W.
, and
Lam
,
J. C.
, “
An analysis of global, direct and diffuse solar radiation
,”
Energy Procedia
75
,
388
393
(
2015
).
34.
Li
,
D. H. W.
,
Yang
,
L.
, and
Lam
,
J. C.
, “
Zero energy buildings and sustainable development implications—A review
,”
Energy
54
,
1
10
(
2013b
).
35.
Nawaz
,
I.
and
Tiwari
,
G. N.
, “
Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level
,”
Energy Policy
34
,
3144
3152
(
2006
).
36.
Oliver
,
J. G. J.
,
Janssens-Maenhout
,
G.
,
Muntean
,
M.
, and
Peters
,
J. A. H. W.
,
Trends in Global CO2 Emissions 2015
(
PBL Netherlands Environmental Assessment Agency
,
The Hague, Netherlands
,
2015
).
37.
Poullikkas
,
A.
, “
Parametric cost-benefit analysis for the installation of photovoltaic parts in the island of Cyprus
,”
Energy Policy
37
,
3673
3680
(
2009
).
38.
Ramos
,
J. S.
and
Ramos
,
H. M.
, “
Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration
,”
Energy Policy
37
,
633
643
(
2009
).
39.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
,
Sensitivity Analysis: Gauging the Worth of Scientific Models
(
Wiley
,
Chichester
,
2000
).
40.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K. P. S.
, “
A quantitative model-independent method for global sensitivity analysis of model output
,”
Technometrics
41
,
39
56
(
1999
).
41.
Sharma
,
R.
and
Tiwari
,
G. N.
, “
Life cycle assessment of stand-alone photovoltaic (SAPV) system under on-field conditions of New Delhi, India
,”
Energy Policy
63
,
272
282
(
2013
).
42.
Shukla
,
P. R.
and
Chaturvedi
,
V.
, “
Low carbon and clean energy scenarios for India: Analysis of targets approach
,”
Energy Econ.
34
(
Suppl 3
),
S487
S495
(
2012
).
43.
Skoplaki
,
E.
and
Palyvos
,
J. A.
, “
On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations
,”
Sol. Energy
83
,
614
624
(
2009
).
44.
Sobol
,
I. M.
, “
Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
,”
Math. Comput. Simul.
55
,
271
280
(
2001
).
45.
Sweeney
,
J. F.
,
Pate
,
M. B.
, and
Choi
,
W.
, “
Life cycle production and costs of a residential solar hot water and grid-connected photovoltaic system in humid subtropical Texas
,”
J. Renewable Sustainable Energy
8
,
053702
(
2016
).
46.
Tang
,
L.
,
Wu
,
J.
,
Yu
,
L.
, and
Bao
,
Q.
, “
Carbon emissions trading scheme exploration in China: A multi-agent-based model
,”
Energy Policy
81
,
152
169
(
2015
).
47.
To
,
W. M.
,
Lai
,
T. M.
,
Lo
,
W. C.
,
Lam
,
K. H.
, and
Chung
,
W. L.
, “
The growth pattern and fuel life cycle analysis of the electricity consumption of Hong Kong
,”
Environ. Pollut.
165
,
1
10
(
2012
).
48.
Wong
,
M. S.
,
Zhu
,
R.
,
Liu
,
Z.
,
Lu
,
L.
,
Peng
,
J.
,
Tang
,
Z.
,
Lo
,
C. H.
, and
Chan
,
W. K.
, “
Estimation of Hong Kong's solar energy potential using GIS and remote sensing technologies
,”
Renewable Energy
99
,
325
335
(
2016
).
You do not currently have access to this content.