Model Predictive Control (MPC) uses the model of system at current time to predict the system behavior at the future sampling interval in the prediction horizon and sets a number of variables to their references due to their controllability from input variables. This paper concentrates on the design and analysis of a controller for Distributed Generation (DG) microgrids in islanding and grid connected operation modes using a Receding Horizon MPC scheme. In this contribution, active and reactive powers are used in a cost function as an inner control loop to produce switching states. Two outer voltage and frequency droop loops share active and reactive powers between DGs in the microgrid. The design concept of the proposed control system is evaluated through simulation studies and experiment under different test scenarios. The impact of the simulation and the experimental results shows that the operations of the DG units within the microgrid can be coordinated effectively under the proposed control system to ensure stable operation of the overall microgrid and power quality improvement.

1.
P.
Cortés
,
G.
Ortiz
,
J. I.
Yuz
,
J. R. S.
Vazquez
, and
L. G.
Franquelo
, “
Model predictive control of an inverter with output LC filter for UPS applications
,”
Trans. Ind. Electron.
56
(
6
),
1875
(
2009
).
2.
Y.
Li
,
D. M.
Vilathgamuwa
, and
P.
Loh
, “
Design, analysis, and real-time testing of a controller for multi bus microgrid system
,”
IEEE Trans. Power Electron.
19
(
5
),
1195
1204
(
2004
).
3.
C. L.
Chen
,
Y. B.
Wang
,
J. S.
Lai
,
Y. S.
Lai
, and
D.
Martin
, “
Design of parallel inverters for smooth mode transfer of microgrid applications
,”
IEEE Trans. Power Electron.
25
(
1
),
6
15
(
2010
).
4.
S.
Kouro
,
P.
Cortés
,
R.
Vargas
,
U.
Ammann
, and
J.
Rodríguez
, “
Model predictive control–A simple and powerful method to control power converters
,”
IEEE Trans. Ind. Electron.
56
(
6
),
1826
1839
(
2009
).
5.
K. S.
Low
and
R.
Cao
, “
Model predictive control of parallel-connected inverter for uninterruptible power supplies
,”
IEEE Trans. Ind. Electron.
55
(
8
),
2884
2893
(
2008
).
6.
K. T.
Tan
,
X. Y.
Peng
,
P. L.
So
,
Y. C.
Chu
, and
M. Z. Q.
Chen
, “
Centralized control for parallel operation of distributed generated inverters in microgrids
,”
IEEE Trans. Smart Grid
3
(
4
),
1977
1987
(
2012
).
7.
B.
Mayer
,
M.
Killian
, and
M.
Kozek
, “
Management of hybrid energy supply systems in buildings using mixed-integer model predictive control
,”
Energy Convers. Manage.
98
(
1
),
470
483
(
2015
).
8.
M.
Ma
,
H.
Chen
,
X.
Liu
, and
F.
Allgöwer
, “
Distributed model predictive load frequency control of multi-area interconnected power system
,”
Int. J. Electr. Power Energy Syst.
62
,
289
298
(
2014
).
9.
E. F.
Camacho
and
C.
Bordons
,
Model Predictive Control (
Springer-Verlag
,
New York
,
1999
).
10.
T. J.
Vyncke
,
S.
Thielemans
, and
J. A. A.
Melkebeek
, “
Simulation-based weight factor selection and FPGA prediction core implementation for finite-set model based predictive control of power electronics
,”
Math. Comput. Simul.
91
,
150
166
(
2013
).
11.
S.
Aurtenechea
,
M. A.
Rodriguez
,
E.
Oyarbide
, and
J. R.
Torrealday
, “
Predictive direct power control of MV-grid-connected two-level and, three-level NPC converters: Experimental results
,” in
Proceeding of European Conference on Power Electronic Application
(
2007
), pp.
1
10
.
12.
H.
Miranda
,
R.
Teodorescu
,
P.
Rodriguez
, and
L.
Helle
, “
Model predictive current control for high-power grid-connected converters with output LCL filter
,” in
35th Annual Conference of IEEE Industrial Electronic (2009)
, pp.
633
638
.
13.
J. D.
Barros
and
J. F.
Silva
, “
Optimal predictive control of three-phase NPC multilevel converter for power quality applications
,”
IEEE Trans. Ind. Electron.
55
(
10
),
3670
3681
(
2008
).
14.
S.
Alepuz
,
S.
Busquets-Monge
,
J.
Bordonau
,
P.
Cortés
, and
S.
Kouro
, “
Control methods for low voltage ride-through compliance in grid-connected NPC converter based wind power systems using predictive control
,” in
Proceeding of IEEE Energy Conversion Congress
, ECCE (
2009
), pp.
363
369
.
15.
K. H.
Ahmed
,
A. M.
Massoud
,
S. J.
Finney
, and
B. W.
Williams
, “
A modified stationary reference frame-based predictive current control with zero steady-state error for LCL coupled inverter-based distributed generation systems
,”
IEEE Trans. Ind. Electron.
58
(
4
),
1359
1370
(
2011
).
16.
J.
Yang
,
Z. L.
Zeng
,
Y. F.
Tang
,
J.
Yan
,
H. B.
He
, and
Y. L.
Wu
, “
Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory
,”
Energies
8
,
2145
2164
(
2015
).
17.
W.
Al-Saedi
,
S. W.
Lachowicz
,
D.
Habibi
, and
O.
Bass
, “
Voltage and frequency regulation based DG unit in an autonomous microgrid operation using Particle Swarm Optimization
,”
Int. J. Electr. Power Energy Syst.
53
,
742
751
(
2013
).
18.
M.
Farinaa
,
A.
Guagliardib
,
F.
Mariania
,
C.
Sandronib
, and
R.
Scattolinia
, “
Model predictive control of voltage profiles in MV networks with distributed generation
,”
Control Eng. Pract.
34
,
18
29
(
2015
).
19.
M.
Nayeripour
,
M.
Hoseintabar
, and
T.
Niknam
, “
A new method for dynamic performance improvement of a hybrid power system by coordination of converter's controller
,”
J. Power Sources
196
(
8
),
4033
4043
(
2011
).
20.
M.
Nayeripour
and
M.
Hoseintabar
, “
A new control strategy of solid oxide fuel cell based on coordination between hydrogen fuel flow rate and utilization factor
,”
Renewable Sustainable Energy Rev.
27
,
505
514
(
2013
).
21.
H.
Abu-Rub
,
J.
Guzinski
,
Z.
Krzeminski
, and
H. A.
Toliyat
, “
Predictive current control of voltage source inverters
,”
IEEE Trans. Ind. Electron.
51
(
3
),
585
593
(
2004
).
22.
O.
Kukrer
, “
Discrete-time current control of voltage-fed three-phase PWM inverters
,”
IEEE Trans. Power Electron.
11
(
2
),
260
269
(
1996
).
23.
A.
Kahrobaeian
,
Y.
Abdol-Rady
, and
I.
Mohamad
, “
Interactive distributed generation interface for flexible micro-grid operation in smart distribution systems
,”
IEEE Trans. Sustainable Energy
3
,
295
(
2012
).
24.
Y. A.-R. I.
Mohamad
and
A.
Radwan
, “
Hierarchical control system for robust microgrid operation and seamless mode-transfer in active distribution systems
,”
IEEE Trans. Smart Grid
2
(
2
),
352
362
(
2011
).
25.
M.
Nayeripour
,
M.
Hoseintabar
,
T.
Niknam
, and
J.
Adab
, “
Power management, dynamic modeling and control of wind/FC/battery-bank based hybrid power generation system for stand-alone application
,”
Eur. Trans. Electr. Energy Syst.
22
(
3
),
271
293
(
2012
).
26.
M. H.
Khooban
,
N.
Vafamand
,
T.
Niknam
,
T.
Dragicevic
, and
F.
Blaabjerg
, “
Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model
,”
IET Electr. Power Appl.
11
,
918
934
(
2017
).
27.
M. H.
Khooban
,
N.
Vafamand
, and
T.
Niknam
, “
T–S fuzzy model predictive speed control of electrical vehicles
,”
ISA Trans.
64
,
231
240
(
2016
).
28.
S. V.
Naghavi
,
A. A.
Safavi
,
M. H.
Khooba
,
S.
Pourdehi
, and
V.
Ghaffari
, “
A robust control strategy for a class of distributed network with transmission delays: LMI-based model predictive controller
,”
COMPEL-Int. J. Comput. Math. Electr. Electron. Eng.
35
(
5
),
1786
1813
(
2016
).
You do not currently have access to this content.