The goal of this study is to investigate the effect of various design parameters on the performance of a Vertical Axis Wind Turbine (VAWT) subjected to realistic unsteady wind conditions. Thirteen turbine design configurations are examined to determine if an optimal VAWT has applications in an urban/suburban environment. The four design parameters of interest include the height-to-diameter aspect ratio (), blade airfoil shape (NACA 0012, 0015, 0018), turbine solidity (), and turbine moment of inertia. The height and diameter of the turbine varied between 1.89 and 2.54 m, depending on the aspect ratio. The turbine moment of inertia was calculated using a computer-aided design drawing of the turbine, along with the realistic material properties of blades, shafts, and supports. The energy generated by each VAWT design configuration is simulated using a full year of actual wind speed data collected in 2009 at 9 different locations around Oklahoma City spanning an area of approximately 500 km2. The wind data were acquired from the top of traffic light posts at a height of about 9 m above the ground. In all cases, an active control strategy is used that allows the turbine to continuously adjust its rotational speed in response to the fluctuating wind. The results suggest that, for the case of operation in unsteady winds, the optimal power coefficient (Cp) versus tip speed ratio curve is not necessarily the one exhibiting the highest peak Cp value but rather the broadest shape. Of the thirteen configurations examined, the optimal wind turbine design capable of harvesting the most energy from the gusty winds was found to have an aspect ratio of , a solidity of , and a blade shape using the NACA 0015 airfoil. This design also displayed the lowest moment of inertia. However, when the effects of mass were removed, this design still performed the best. The site-to-site variation in terms of energy captured relative to the available energy in the gusty winds was only about 5% on average and increased slightly with turbine moment of inertia. Four of the suburban sites studied were deemed to be economically viable locations for a small-scale VAWT. The results further indicate that, at one of these sites, the levelized cost of energy associated with the top performing turbine designs examined in the study was about 10% less than the national electricity price, meaning that wind energy provides a cheaper alternative to fossil fuel at this location. It is surmised that VAWTs could economically harvest wind energy in the urban center as well if the turbines were located higher than 9 m, such as on the rooftops of commercial/residential buildings.
Skip Nav Destination
Optimization of a vertical axis wind turbine for application in an urban/suburban area
Article navigation
July 2017
Research Article|
August 01 2017
Optimization of a vertical axis wind turbine for application in an urban/suburban area
Lam Nguyen;
Lam Nguyen
Department of Mechanical Engineering, University of Utah
, Salt Lake City, Utah 84112, USA
Search for other works by this author on:
Meredith Metzger
Meredith Metzger
Department of Mechanical Engineering, University of Utah
, Salt Lake City, Utah 84112, USA
Search for other works by this author on:
J. Renewable Sustainable Energy 9, 043302 (2017)
Article history
Received:
March 20 2017
Accepted:
July 05 2017
Citation
Lam Nguyen, Meredith Metzger; Optimization of a vertical axis wind turbine for application in an urban/suburban area. J. Renewable Sustainable Energy 1 July 2017; 9 (4): 043302. https://doi.org/10.1063/1.4994574
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Enhanced energy capture by a vertical axis wind turbine during gusty winds in an urban/suburban environment
J. Renewable Sustainable Energy (October 2015)
Comparison of forecasting methods for vertical axis wind turbine applications in an urban/suburban area
J. Renewable Sustainable Energy (March 2017)
Strategy framework for resilient suburbans of Ho Chi Minh City
AIP Conference Proceedings (September 2021)
Harvesting wind energy from the complex urban environment using CFD approach
AIP Conference Proceedings (November 2022)
Organization of suburban passenger transportations on the railway: Analysis of the transport situation
AIP Conference Proceedings (May 2023)