We introduce an expanded Stochastic Impacts by Regression on Population, Affluence, and Technology model and China's provincial data samples from 2003 to 2012 in order to explore the effect of research and development (R&D) on energy intensity across different regions in China. A panel vector autoregressive model is employed to explore the possible granger causes between indigenous R&D stock, foreign R&D spillover, and energy intensity, and a Driscoll–Kraay method is applied to assess their relationships. The main conclusions are as follows: (i) Granger casual links from home R&D stock and foreign R&D spillover to energy intensity exist in China. (ii) A negative effect of indigenous R&D stock on energy intensity exists in nationwide, eastern, and central samples, and it grows as the stock increases. Besides, the impact in the central region is much larger than that in eastern China. (iii) Foreign R&D spillovers via import and foreign direct investment (FDI) significantly reduce energy intensity in two sub-samples. FDI spillover's impact is larger than import spillover's impact in central provinces, while it is smaller in the eastern region. Besides, mainly because of the low absorptive capacity, the impacts of foreign R&D spillovers on energy intensity are insignificant in western China.

1.
Coe
,
D. T.
and
Helpman
,
E.
, “
International R&D spillovers
,”
Eur. Econ. Rev.
39
,
859
887
(
1995
).
2.
Coe
,
D. T.
,
Helpman
,
E.
, and
Hoffmaister
,
A. W.
, “
North-south R&D spillovers
,”
CEPR Discuss. Pap.
107
(
16
),
134
149
(
1995
).
3.
Darrat
,
A. F.
,
Al-Sowaidi
,
S. S.
,
Darrat
,
A. F.
, and
Al-Sowaidi
,
S. S.
, “
Information technology, financial deepening economic growth: Some evidence from a fast growing emerging economy
,”
J. Econ. Int. Finance
2
,
28
35
(
2010
).
4.
Dickey
,
D. A.
and
Fuller
,
W. A.
, “
Distribution of the estimators for autoregressive time series with a unit root
,”
J. Am. Stat. Assoc.
74
,
427
431
(
1979
).
5.
Dickey
,
D.
and
Fuller
,
W. A.
, “
Likelihood ratio statistics for autoregressive time series with a unit root
,”
Econometrica
49
,
1057
1072
(
1981
).
6.
Driscoll
J. C.
and
Kraay
,
A. C.
, “
Consistent covariance matrix estimation with spatially dependent panel data
,”
Rev. Econ. Stat.
80
,
549
560
(
1998
).
7.
Ehrlich
,
P. R.
and
Holdren
,
J. P.
, “
Impact of population growth
,”
Science
171
,
1212
1217
(
1971
).
8.
Elliott
,
R. J. R.
,
Sun
,
P.
, and
Chen
,
S.
, “
Energy intensity and foreign direct investment: A Chinese city-level study
,”
Energy Econ.
40
,
484
494
(
2013
).
9.
Fan
,
R.
,
Luo
,
M.
, and
Zhang
,
P.
, “
A study on evolution of energy intensity in China with heterogeneity and rebound effect
,”
Energy
99
,
159
169
(
2016
).
10.
Feng
,
J.
and
Yuan
,
J.
, “
Effect of technology innovation and spillovers on the carbon intensity of human well-being
,”
SpringerPlus
5
(
1
),
346
(
2016
).
11.
Fu
,
K.
,
Allen
,
M.
, and
Archibald
,
R.
, “
Evaluating the relationship between the population trends, prices, heat waves, and the demands of energy consumption in cities
,”
Sustainability
7
,
15284
15301
(
2015
).
12.
Garbaccio
,
R. F.
and
Jorgenson
,
D. W.
, “
Why has the energy-output ratio fallen in China?
,”
Energy J.
20
,
63
92
(
1999
).
13.
Goldsmith
,
R. W.
,
A Perpetual Inventory of National Wealth
(
National Bureau of Economic Research, Inc.
,
1951
).
14.
Grossman
,
G.
, “
Pollution and growth: What do we know?
,” in
The Economics of Sustainable Development
(
Cambridge University Press
,
1995
).
15.
Hübler
,
M.
, “
Energy saving technology diffusion via FDI and trade: A CGE model of China
,” Kiel Working Papers (
2009
).
16.
Hübler
,
M.
, “
Technology diffusion under contraction and convergence: A CGE analysis of China
,”
Energy Econ.
33
,
131
142
(
2011
).
17.
Han
,
B.
,
Wang
, D.
,
Ding
,
W.
, and
Han
,
L.
, “
Effect of information and communication technology on energy consumption in China
,”
Nat. Hazards
84
,
297
315
(
2016
).
18.
Hang
,
L.
and
Tu
,
M.
, “
The impacts of energy prices on energy intensity: Evidence from China
,”
J. Quant. Tech. Econ.
35
,
2978
2988
(
2007
).
19.
Herrerías Talamantes
,
M. J.
and
Orts Ríos
,
V.
,
Imports and Growth in China
(
Elsevier
,
2011
).
20.
Herrerias
,
M. J.
,
Cuadros
,
A.
, and
Luo
,
D.
, “
Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions
,”
Appl. Energy
162
,
1374
1384
(
2015
).
21.
Herrerias
,
M. J.
,
Cuadros
,
A.
, and
Orts
,
V.
, “
Energy intensity and investment ownership across Chinese provinces
,”
Energy Econ.
36
,
286
298
(
2013
).
22.
Hoechle
,
D.
, “
Robust standard errors for panel regressions with cross-sectional dependence
,”
Stata J.
7
,
281
312
(
2007
).
23.
Im
,
K. S.
,
Pesaran
,
M. H.
, and
Shin
,
Y.
, “
Testing for unit roots in heterogeneous panels
,”
J. Econ.
115
,
53
74
(
2003
).
24.
Jiang
,
L.
,
Folmer
,
H.
, and
Ji
,
M.
, “
The drivers of energy intensity in China: A spatial panel data approach
,”
China Econ. Rev.
31
,
351
360
(
2014
).
25.
Jiang
,
L.
and
Ji
,
M.
, “
China's energy intensity, determinants and spatial effects
,”
Sustainability
8
,
544
(
2016
).
26.
Kao
,
C.
, “
Spurious regression and residual-based tests for cointegration in panel data
,”
J. Econ.
90
,
1
44
(
1999
).
27.
Khazzoom
,
J. D.
, “
Economic implications of mandated efficiency in standards for household appliances
,”
Energy J.
1
(
4
),
21
40
(
1980
).
28.
Lin
,
B.
and
Li
,
J.
, “
The rebound effect for heavy industry: Empirical evidence from China
,”
Energy Policy
74
,
589
599
(
2014
).
29.
Lin
,
B.
and
Liu
,
X.
, “
Electricity tariff reform and rebound effect of residential electricity consumption in China
,”
Energy
59
,
240
247
(
2013
).
30.
Lin
,
B.
and
Zhao
,
H.
, “
Energy efficiency and conservation in China's chemical fiber industry
,”
J. Cleaner Prod.
103
,
345
352
(
2014
).
31.
Liu
,
C.
,
Kong
,
X. L.
, and
Gao
,
T. M.
, “
Empirical analysis of changes in china's industrial sector energy consumption intensity and influential factors
,”
Resour. Sci.
30
(9),
1290
1299
(
2008
) (in Chinese).
32.
Liu
,
Z.
,
China's Carbon Emissions Report 2015
(
Sustainability Science Program and Energy Technology Innovation Policy Research Group, Belfer Center, Harvard Kennedy School
,
Cambridge, MA
,
2015
).
33.
Romer
,
P. M.
, “
Increasing returns and long-run growth
,”
J. Political Econ.
94
,
1002
1037
(
1986
).
34.
Shao
,
S.
,
Huang
,
T.
, and
Yang
,
L.
, “
Using latent variable approach to estimate China's economy-wide energy rebound effect over 1954–2010
,”
Energy Policy
72
,
235
248
(
2014
).
35.
Shen
,
X.
and
Dai
,
P.
, “
Factors affecting China's carbon intensity
,”
Adv. Climate Change Res.
7
(
1
),
54
58
(
2011
) (in Chinese).
36.
Shi
,
D.
, “
The improvement of energy utilization efficiency in China's economic growth
,”
Econ. Res.
9
,
49
56
(
2002
) (in Chinese).
37.
Song
,
F.
and
Zheng
,
X.
, “
What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level
,”
Energy Policy
51
,
445
453
(
2012
).
38.
Teng
,
Y.
, “
Indigenous R&D, technology imports and energy consumption intensity: Evidence from industrial sectors in China
,”
Energy Procedia
16
,
2019
2026
(
2012
).
39.
Thomas Dietz
,
E. A. R.
, “
Effects of population and affluence on CO2 emissions
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
175
179
(
1997
).
40.
Wan
,
J.
,
Baylis
,
K.
, and
Mulder
,
P.
, “
Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries
,”
Energy Econ.
48
,
253
264
(
2015
).
41.
Wang
,
Z.
,
Zhang
,
B.
, and
Liu
,
T.
, “
Empirical analysis on the factors influencing national and regional carbon intensity in China
,”
Renewable Sustainable Energy Rev.
55
,
34
42
(
2016
).
42.
Wei
,
W.
,
Chen
,
D.
, and
Hu
,
D.
, “
Study on the evolvement of technology development and energy efficiency—A case study of the past 30 years of development in Shanghai
,”
Sustainability
8
,
457
(
2016
).
43.
Yang
,
Y.
,
Cai
,
W.
, and
Wang
,
C.
, “
Industrial CO2 intensity, indigenous innovation and R&D spillovers in China's provinces
,”
Appl. Energy
131
,
117
127
(
2014
).
44.
Yu
,
H.
, “
The influential factors of China's regional energy intensity and its spatial linkages: 1988–2007
,”
Energy Policy
45
,
583
593
(
2012
).
45.
Yu
,
H.
,
Energy Consumption and Economy Development: An Empirical Case Study for China
(
John Wiley & Sons, Ltd.
,
2015
).
46.
Yuan
,
C.
,
Liu
,
S.
, and
Wu
,
J.
, “
The relationship among energy prices and energy consumption in China
,”
Energy Policy
38
,
197
207
(
2010
).
47.
Zhang
,
C.
and
Lin
,
Y.
, “
Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China
,”
Energy Policy
49
,
488
498
(
2012
).
48.
Zheng
,
Y.
,
Qi
,
J.
, and
Chen
,
X.
, “
The effect of increasing exports on industrial energy intensity in China
,”
Energy Policy
39
,
2688
2698
(
2011
).
You do not currently have access to this content.