The output voltage oscillations of a photovoltaic (PV) system in parallel with other challenging voltage sources such as batteries result in drastic power oscillations. So, it is much more attractive to employ a PV system as a current source rather than as a source of voltage alongside a battery. To this aim, the inductance current of the PV's DC–DC converter is controlled and forced to track the maximum power point (MPP) reference, acting as a source of current. Then, the load voltage, and the DC–DC converter output voltage would be the same as the battery voltage. For this purpose, the paper proposes a two-level current-based maximum power point tracking (MPPT) algorithm. The proposed high-level algorithm contains two loops, namely, a set-point calculation loop and a fine-tuning loop. Based on an offline calculation using the PV's short circuit current, the set-point loop first estimates the PV's maximum power point. Second, the fine-tuning loop tracks the exact value of the PV's maximum power point, using the perturbation and observation (P&O) method. Further, a low-level fuzzy-based controller is proposed to force the continuous current (i.e., inductance current) of PV's DC–DC converter to track the generated reference of the high-level controller with no oscillation. The low-level fuzzy-based controller is proposed instead of the conventional proportional integral (PI) controller that does not work with minimal errors, since inserting one unstable pole into the PV system's transfer function. Matlab/Simulink simulations validate the effectiveness of the proposed MPPT algorithm.

1.
M. A.
Farahat
,
M. A.
Enany
, and
A.
Nasr
, “
Assessment of maximum power point tracking techniques for photovoltaic system applications
,”
J. Renewable Sustainable Energy
7
,
042702
(
2015
).
2.
D.
Verma
,
S.
Nema
,
A. M.
Shandilya
, and
S. K.
Dash
, “
Comprehensive analysis of maximum power point tracking techniques in solar photovoltaic systems under uniform insolation and partial shaded condition
,”
J. Renewable Sustainable Energy
7
,
042701
(
2015
).
3.
V.
Salas
,
E.
Olias
,
A.
Barrado
, and
A.
Lazaro
, “
Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems
,”
Sol. Energy
90
,
1555
1578
(
2006
).
4.
S. K.
Dash
,
S.
Nema
,
R. K.
Nema
, and
D.
Verma
, “
A comprehensive assessment of maximum power point tracking techniques under uniform and non-uniform irradiance and its impact on photovoltaic systems: A review
,”
J. Renewable Sustainable Energy
7
,
063113
(
2015
).
5.
Y. M.
Chen
,
Y. C.
Liu
, and
F. Y.
Wu
, “
Multi-input converter with power factor correction, maximum power point tracking, and ripple-free input currents
,”
IEEE Trans. Power Electron.
19
,
631
639
(
2004
).
6.
P.-C.
Chen
,
P.-Y.
Chen
,
Y.-H.
Liu
,
J.-H.
Chen
, and
Y.-F.
Luo
, “
A comparative study on maximum power point tracking techniques for photovoltaic generation systems operating under fast changing environments
,”
Sol. Energy
119
,
261
276
(
2015
).
7.
T.
Tafticht
,
K.
Agbossou
,
M. L.
Doumbia
, and
A.
Cheriti
, “
An improved maximum power point tracking method for photovoltaic systems
,”
Renewable Energy
33
,
1508
1516
(
2008
).
8.
D.
He
and
R. M.
Nelms
, “
Fuzzy logic average current-mode control for DC–DC converters using an inexpensive 8-bit microcontroller
,”
IEEE Trans. Ind. Appl.
41
(
6
),
1531
1538
(
2005
).
9.
L.
Guo
,
J. Y.
Hung
, and
R. M.
Nelms
, “
Evaluation of DSP-based PID and fuzzy controllers for DC–DC converters
,”
IEEE Trans. Ind. Electron.
56
(
6
),
2237
2248
(
2009
).
10.
A. G.
Perry
,
G.
Feng
,
Y.-F.
Liu
, and
P. C.
Sen
, “
A design method for PI-like fuzzy logic controllers for DC–DC converter
,”
IEEE Trans. Ind. Electron.
54
(
5
),
2688
2696
(
2007
).
11.
C. S.
Swathy
,
C.
Agees Kumar
, and
R.
Manju
, “
Maximum power point tracking of photovoltaic system using intelligent controller
,”
Int. J. Eng. Technol.
5
(
2
),
1768
1774
(
2013
).
12.
K. H.
Cheng
,
C. F.
Hsu
,
C. M.
Lin
,
T. T.
Lee
, and
C. S.
Li
, “
Fuzzy–neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions
,”
IEEE Trans. Ind. Electron.
54
(
3
),
1528
1536
(
2007
).
13.
K.
Rouzbehi
,
A.
Miranian
,
A.
Lunai
, and
P.
Rodriguezi
, “
Identification and maximum power point tracking of photovoltaic generation by a local neuro-fuzzy model
,” in
38th Annual Conference on IEEE Industrial Electronics Society
(
2012
), pp.
1019
1024
.
14.
J. K.
Shiau
,
Y. C.
Wei
, and
M.
Lee
, “
Fuzzy controller for a voltage-regulated solar-powered MPPT system for hybrid power system applications
,”
Energies
8
(
5
),
3292
3312
(
2015
).
15.
A. A.
Ghassami
,
S. M.
Sadeghzadeh
, and
A.
Soleimani
, “
A high performance maximum power point tracker for PV systems
,”
Int. J. Electr. Power Energy Syst.
53
,
237
243
(
2013
).
16.
M. M.
Algazar
,
H.
AL-monier
,
H. A.
EL-halim
, and
M. E.
El Kotb Salem
, “
Maximum power point tracking using fuzzy logic control
,”
Int. J. Electr. Power Energy Syst.
39
,
21
28
(
2012
).
17.
O.
Guenounou
,
B.
Dahhou
, and
F.
Chabour
, “
Adaptive fuzzy controller based MPPT for photovoltaic systems
,”
Energy Convers. Manage.
78
,
843
850
(
2014
).
18.
C. K.
Sundarabalan
,
K.
Selvi
, and
K. S.
Kubra
, “
Performance investigation of fuzzy logic controlled MPPT for energy efficient solar PV systems
,”
Power Electron. Renewable Energy Syst.
326
,
761
770
(
2015
).
19.
T. L.
Kottas
,
Y. S.
Boutalis
, and
A. D.
Karlis
, “
New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks
,”
IEEE Trans. Energy Convers.
21
(
3
),
793
(
2006
).
20.
J. R.
Vazquez
,
A. D.
Martin
, and
R. S.
Herrera
, “
Neuro-fuzzy control of a grid-connected photovoltaic system with power quality improvement
,” in
IEEE EUROCON
(
2013
), pp.
850
857
.
21.
M. A. A.
Mohd Zainuri
,
M. A.
Mohd Radzi
,
A.
Che Soh
, and
N.
Abd Rahim
, “
Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter
,”
IET Renewable Power Gener.
8
(
2
),
183
194
(
2014
).
22.
B.
Rahmani
,
W.
Li
, and
G.
Liu
, “
An advanced universal power quality conditioning system and MPPT method for grid integration of photovoltaic systems
,”
Int. J. Electr. Power Energy Syst.
69
,
76
84
(
2015
).
23.
A.
Murtaza
,
M.
Chiaberge
,
M. D.
Giuseppe
, and
D.
Boero
, “
A duty cycle optimization based hybrid maximum power point tracking technique for photovoltaic systems
,”
Int. J. Electr. Power Energy Syst.
59
,
141
154
(
2014
).
You do not currently have access to this content.