The use of Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD) has gained popularity in the last decade. The success of this technique relies on the possibility to deposit thin films in a fast, vacuum-free, low-cost, low-damage, and high throughput way. In this work, we present ZnO and Aluminium doped ZnO (AZO) films deposited by AP-SALD at low temperature (<220 °C) with high uniformity and conformity. The ZnO films present a high transparency of 80%–90% in the visible range, with a tuneable band-gap, between 3.30 eV and 3.55 eV, controlled by the deposition temperature. The carrier density reaches values greater than 3 × 1019 cm−3, while the electron mobility of the films is as high as 5.5 cm2 V−1 s−1, resulting in an optimum resistivity of 5 × 10−2 Ω cm. By doping ZnO with aluminium, the resistivity decreases down to 5.57 × 10−3 Ω cm, as a result of a significant increase in the carrier density up to 4.25 × 1020 cm−3. The combination of ZnO thin films with p-type cuprous oxide (Cu2O), deposited by aerosol assisted metal organic chemical vapor deposition, allowed the formation of oxide-based pn junctions. The dark I-V characteristic curve confirms a rectifying behaviour, opening the window for the production of all-oxide solar cells completely by chemical vapour deposition methods. We also show the potential of AP-SALD to deposit AZO as a transparent conductive oxide layer for silicon heterojunction solar cells.

1.
K. L.
Chopra
,
S.
Major
, and
D. K.
Pandya
, “
Transparent conductors—A status review
,”
Thin Solid Films
102
(
1
),
1
46
(
1983
).
2.
K.
Ellmer
,
Nat. Photonics
6
,
809
(
2012
).
3.
D.
Zhang
,
A.
Tavakoliyaraki
,
Y.
Wu
,
R. A. C. M. M.
van Swaaij
, and
M.
Zeman
, “
Influence of ITO deposition and post annealing on HIT solar cell structures
,”
Energy Procedia
8
,
207
213
(
2011
).
4.
B.
Demaurex
,
S.
De Wolf
,
A.
Descoeudres
,
Z.
Charles Holman
, and
C.
Ballif
, “
Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering
,”
Appl. Phys. Lett.
101
(
17
),
171604
(
2012
).
5.
D. S.
Hecht
,
L.
Hu
, and
G.
Irvin
, “
Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures
,”
Adv. Mater.
23
(
13
),
1482
1513
(
2011
).
6.
A.
Lyubchyk
 et al, “
Mapping the electrical properties of ZnO-based transparent conductive oxides grown at room temperature and improved by controlled postdeposition annealing
,”
Adv. Electron. Mater.
2
(
1
),
1500287
(
2016
).
7.
S.-M.
Park
,
T.
Ikegami
,
K.
Ebihara
, and
P.-K.
Shin
, “
Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition
,”
Appl. Surf. Sci.
253
(
3
),
1522
1527
(
2006
).
8.
D. H.
Levy
,
R. S.
Jerr
, and
J. T.
Carey
, U.S. patent 2009/0217878 (3 September
2009
).
9.
E. H. A.
Granneman
and
S. E.
van Nooten
, U.S. patent 2011/0124199 (26 May
2011
).
10.
D. J.
Maas
,
B.
van Someren
,
A. S.
Lexmond
,
C. I. M. A.
Spee
,
A. E.
Duisterwinkel
, and
A. J. P. M.
Vermeer
, W.O. patent 2010/024671 (4 March
2010
).
11.
D.
Muñoz-Rojas
,
H.
Sun
,
D. C.
Iza
,
J.
Weickert
,
L.
Chen
,
H.
Wang
,
L.
Schmidt-Mende
, and
J. L.
MacManus-Driscoll
, “
High-speed atmospheric atomic layer deposition of ultra thin amorphous TiO2 blocking layers at 100 °C for inverted bulk heterojunction solar cells: AALD for inverted bulk heterojunction solar cells
,”
Prog. Photovoltaics Res. Appl.
21
,
393
–400 (
2013
).
12.
P.
Poodt
 et al, “
Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition
,”
J. Vac. Sci. Technol. Vac. Surf. Films
30
(
1
),
10802
(
2012
).
13.
D.
Muñoz-Rojas
and
J.
MacManus-Driscoll
, “
Spatial atmospheric atomic layer deposition: A new laboratory and industrial tool for low-cost photovoltaics
,”
Mater. Horiz.
1
(
3
),
314
(
2014
).
14.
K. P.
Musselman
 et al, “
Rapid open-air deposition of uniform, nanoscale, functional coatings on nanorod arrays
,”
Nanoscale Horiz.
2
,
110
–117 (
2017
).
15.
D.
Muñoz-Rojas
 et al, “
Growth of 5 cm2 V−1 s−1 mobility, p-type copper (I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225 °C and below
,”
AIP Adv.
2
(
4
),
42179
(
2012
).
16.
A. T.
Marin
,
D.
Muñoz-Rojas
,
D. C.
Iza
,
T.
Gershon
,
K. P.
Musselman
, and
J. L.
MacManus-Driscoll
, “
Novel atmospheric growth technique to improve both light absorption and charge collection in ZnO/Cu2O thin film solar cells
,”
Adv. Funct. Mater.
23
,
3413
3419
(
2013
).
17.
J.
Resende
,
C.
Jiménez
,
N. D.
Nguyen
, and
J.-L.
Deschanvres
, “
Magnesium-doped cuprous oxide (Mg:Cu2O) thin films as a transparent p-type semiconductor
,”
Phys. Status Solidi A
213
(
9
),
2296
2302
(
2016
).
18.
P.
Scherrer
,
Göttinger Nachr. Ges.
2
,
98
(
1918
).
19.
J.
Tauc
and
A.
Menth
, “
States in the gap
,”
J Non-Cryst. Solids
8–10
,
569
(
1972
).
20.
T. S.
Suntola
,
A. J.
Pakkala
, and
S. G.
Lindfors
, U.S. patent 4,389,973 (
1983
).
21.
T. S.
Suntola
and
J.
Antson
, U.S. patent 4,058,430 (
1977
).
22.
T.
Kääriäinen
,
D.
Cameron
,
M.-L.
Kääriäinen
, and
A.
Sherman
, in
Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications
, 2nd ed. (
Wiley-Scrivener
,
2013
), p.
215
.
23.
D. H.
Levy
,
D.
Freeman
,
S. F.
Nelson
,
P. J.
Cowdery-Corvan
, and
L. M.
Irving
, “
Stable ZnO thin film transistors by fast open air atomic layer deposition
,”
Appl. Phys. Lett.
92
(
19
),
192101
(
2008
).
24.
A.
Illiberi
,
F.
Roozeboom
, and
P.
Poodt
, “
Spatial atomic layer deposition of zinc oxide thin films
,”
ACS Appl. Mater. Interfaces
4
(
1
),
268
272
(
2012
).
25.
A.
Illiberi
,
R.
Scherpenborg
,
Y.
Wu
,
F.
Roozeboom
, and
P.
Poodt
, “
Spatial atmospheric atomic layer deposition of AlxZn1-xO
,”
ACS Appl. Mater. Interfaces
5
(
24
),
13124
13128
(
2013
).
26.
X.
Moya
and
D.
Muñoz-Rojas
,
Materials for Sustainable Energy Applications: Conversion, Storage, Transmission and Consumption
(
Pan Stanford Publishing
,
Singapore
,
2016
).
27.
J.
Katayama
,
K.
Ito
,
M.
Matsuoka
, and
J.
Tamaki
, “
Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition
,”
J. Appl. Electrochem.
34
(
7
),
687
692
(
2004
).
28.
A.
Mittiga
,
E.
Salza
,
F.
Sarto
,
M.
Tucci
, and
R.
Vasanthi
, “
Heterojunction solar cell with 2% efficiency based on a Cu2O substrate
,”
Appl. Phys. Lett.
88
(
16
),
163502
(
2006
).
29.
S.
Nandy
,
A.
Banerjee
,
E.
Fortunato
, and
R.
Martins
, “
A review Cu2O CuI-based p-type semiconducting transparent oxide materials: promising candidates new generation oxide based electronics
,”
Rev. Adv. Sci. Eng.
2
(4),
273
304
(
2013
).
30.
L. C.
Olsen
,
F. W.
Addis
, and
W.
Miller
, “
Experimental and theoretical studies of Cu2O solar cells
,”
Sol. Cells
7
(
3
),
247
279
(
1982
).
31.
Y.
Nishi
,
T.
Miyata
, and
T.
Minami
, “
The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells
,”
Thin Solid Films
528
,
72
76
(
2013
).
32.
T.
Minami
,
Y.
Nishi
, and
T.
Miyata
, “
High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as N-type layer
,”
Appl. Phys. Express
6
(
4
),
44101
(
2013
).
33.
S.
De Wolf
,
A.
Descoeudres
,
Z. C.
Holman
, and
C.
Ballif
, “
High-efficiency silicon heterojunction solar cells: A review
,”
Green
2
(
1
),
7
24
(
2012
).
34.
P.
Banerjee
,
W.-J.
Lee
,
K.-R.
Bae
,
S. B.
Lee
, and
G. W.
Rubloff
, “
Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films
,”
J. Appl. Phys.
108
(
4
),
43504
(
2010
).
You do not currently have access to this content.