The lift-type vertical axis wind turbine (Darrieus rotor) is considered to be a promising device for harnessing wind energy due to its potential advantages. Traditionally, a standard Darrieus rotor has a single ring of airfoils (two or three airfoils) that spins about a vertical axis and has low starting torque. A few researchers have stated that the Darrieus rotor with two sets of blades is likely to improve not only the starting ability but also the power coefficient. However, they have not provided sufficient evidence to support their statement. Thus, in this paper, we conducted a detailed computational fluid dynamics (CFD) investigation on the characteristics (e.g., power output, static torque, vortex, and pressure contours) of this rotor with two sets of blades. The effect of the distance between the outer and inner blades on the performance of this rotor was also discussed and quantified. The findings of this paper are expected to help in developing this new type of Darrieus rotor and offer valuable suggestions for real field applications.

1.
F.
Birol
,
World Energy Outlook 2014
(
International Energy Agency
,
2014
).
2.
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team], edited by
R. K.
Pachauri
and
L. A.
Meyer
, IPCC, Geneva, Switzerland, 2014, 151 pp.
3.
L. A.
Danao
,
O.
Eboibi
, and
R.
Howell
, “
An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine
,”
Appl. Energy
107
,
403
411
(
2013
).
4.
L. M.
Al-Hadhrami
, “
Performance evaluation of small wind turbines for off grid applications in Saudi Arabia
,”
Energy Convers. Manage.
81
,
19
29
(
2014
).
5.
Y.
Kumar
 et al, “
Wind energy: Trends and enabling technologies
,”
Renewable Sustainable Energy Rev.
53
,
209
224
(
2016
).
6.
G.
Bedon
,
M.
Raciti Castelli
, and
E.
Benini
, “
Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm
,”
Renewable Energy
59
,
184
192
(
2013
).
7.
W.
Tjiu
 et al, “
Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations
,”
Renewable Energy
75
,
50
67
(
2015
).
8.
B. D.
Plourde
 et al, “
An experimental investigation of a large, vertical-axis wind turbine: Effects of venting and capping
,”
Wind Eng.
35
(
2
),
213
222
(
2011
).
9.
J. P.
Abraham
 et al, “
Numerical simulation of fluid flow around a vertical-axis turbine
,”
J. Renewable Sustainable Energy
3
(
3
),
033109
(
2016
).
10.
J. O.
Dabiri
, “
Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays
,”
J. Renewable Sustainable Energy
3
(
4
),
043104
(
2016
).
11.
A.
Goude
and
F.
Bulow
, “
Aerodynamic and electrical evaluation of a VAWT farm control system with passive rectifiers and mutual DC-bus
,”
Renewable Energy
60
,
284
292
(
2013
).
12.
M.
Tartuferi
 et al, “
Enhancement of Savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems
,”
Energy
79
,
371
384
(
2015
).
13.
W.
Tjiu
 et al, “
Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development
,”
Renewable Energy
75
,
560
571
(
2015
).
14.
M. H.
Mohamed
, “
Performance investigation of H-rotor Darrieus turbine with new airfoil shapes
,”
Energy
47
(
1
),
522
530
(
2012
).
15.
S. C.
Roh
and
S. H.
Kang
, “
Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine
,”
J. Mech. Sci. Technol.
27
(
11
),
3299
3307
(
2013
).
16.
A.
Sunyoto
,
F.
Wenehenubun
, and
H.
Sutanto
, “
The effect of number of blades on the performance of H-Darrieus type wind turbine
,” in
2013 International Conference on QiR (Quality in Research)
(IEEE,
2013
).
17.
O.
Eboibi
, “
The influence of blade chord on the aerodynamics and performance of vertical axis wind turbines
,” Ph.D. thesis,
The University of Sheffield, Mechanical Engineering Department
,
2013
, p.
258
.
18.
L.
Zhang
 et al, “
Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine
,”
J. Cent. South Univ.
21
(
4
),
1417
1427
(
2014
).
19.
M. H.
Mohamed
, “
Impacts of solidity and hybrid system in small wind turbines performance
,”
Energy
57
,
495
504
(
2013
).
20.
R.
Bogateanu
 et al, “
Reynolds number effects on the aerodynamic performance of small VAWTs
,”
Sci. Bull. – Univ. “Politeh” Bucharest, Ser. D
76
(
1
),
25
36
(
2014
).
21.
F.
Scheurich
,
T. M.
Fletcher
, and
R. E.
Brown
, “
The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine
,” in
ASME Wind Energy Symposium
,
2010
.
22.
R.
Gupta
,
A.
Biswas
, and
K. K.
Sharma
, “
Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor
,”
Renewable Energy
33
(
9
),
1974
1981
(
2008
).
23.
M. A.
Singh
,
A.
Biswas
, and
R. D.
Misra
, “
Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor
,”
Renewable Energy
76
,
381
387
(
2015
).
24.
Q. Y.
Li
,
S. L.
Wu
,
F. B.
Peng
, and
G. J.
Li
, “
A study on aerodynamic of vertical-axis wind-mill with double blades
,” in
Solar World Congress
(
1983
), pp.
14
19
.
25.
M. D.
Rhodes
and
B. P.
Selberg
, “
Benefits of dual wings over single wings for high-performance business airplanes
,”
J. Aircr.
21
(
2
),
116
127
(
1984
).
26.
K.
Kusunose
,
K.
Matsushima
, and
D.
Maruyama
, “
Supersonic biplane—A review
,”
Progress Aerosp. Sci.
47
(
1
),
53
87
(
2011
).
27.
J. M.
Moschetta
and
C.
Thipyopas
, “
Aerodynamic performance of a biplane micro air vehicle
,”
J. Aircr.
44
(
1
),
291
299
(
2007
).
28.
M.
Nenadović
,
Recherches Sur Les Cellules Biplanes Rigides D'envergure Infinie
(
E. Blondel la Rougery
,
1936
), Vol.
86
.
29.
A.
Maqsood
and
T. H.
Go
, “
Parametric studies and performance analysis of a biplane micro air vehicle
,”
Int. J. Aeronaut. Space Sci.
14
(
3
),
229
236
(
2013
).
30.
F.
Balduzzi
 et al, “
Critical issues in the CFD simulation of Darrieus wind turbines
,”
Renewable Energy
85
,
419
435
(
2016
).
31.
K. M.
Almohammadi
 et al, “
Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine
,”
Energy
58
,
483
493
(
2013
).
32.
S.
Rolland
 et al, “
Benchmark experiments for simulations of a vertical axis wind turbine
,”
Appl. Energy
111
,
1183
1194
(
2013
).
33.
A.
De Marco
 et al, “
A numerical study on a vertical-axis wind turbine with inclined arms
,”
Int. J. Aerosp. Eng.
2014
,
180498
.
34.
B. D.
Plourde
 et al, “
Simulations of three-dimensional vertical-axis turbines for communications applications
,”
Wind Eng.
36
(
4
),
443
454
(
2012
).
35.
J. P.
Abraham
 et al, “
Summary of Savonius wind turbine development and future applications for small-scale power generation
,”
J. Renewable Sustainable Energy
4
(
4
),
042703
(
2012
).
36.
M.
Raciti Castelli
,
A.
Englaro
, and
E.
Benini
, “
The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD
,”
Energy
36
(
8
),
4919
4934
(
2011
).
37.
T.
Maître
,
E.
Amet
, and
C.
Pellone
, “
Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments
,”
Renewable Energy
51
(
2
),
497
512
(
2013
).
38.
F.
Trivellato
and
M. R.
Castelli
, “
On the Courant-Friedrichs-Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis
,”
Renewable Energy
62
(
3
),
53
62
(
2014
).
39.
R. N.
Laoulache
, “
Performance modeling of ducted vertical axis turbine using computational fluid dynamics
,”
Mar. Technol. Soc. J.
47
(
4
),
36
44
(
2013
).
40.
K. W.
Mclaren
and
K. W.
Mclaren
, “
A numerical and experimental study of unsteady loading of high solidity vertical axis wind turbines
,” Ph.D. thesis,
Mcmaster University Library
,
2011
.
41.
A.
Untaroiu
 et al, “
Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach
,”
J. Sol. Energy Eng.
133
(
4
),
041010
(
2011
).
42.
R.
Howell
 et al, “
Wind tunnel and numerical study of a small vertical axis wind turbine
,”
Renewable Energy
35
(
2
),
412
422
(
2010
).
43.
S.
Lain
and
C.
Osorio
, “
Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine
,”
J. Sci. Ind. Res.
69
(
12
),
906
912
(
2010
), see http://nopr.niscair.res.in/handle/123456789/10657.
44.
A. J.
Fiedler
and
S.
Tullis
, “
Blade offset and pitch effects on a high solidity vertical axis wind turbine
,”
Wind Eng.
33
(
3
),
237
246
(
2009
).
45.
J. H.
Strickland
,
Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes
(
SAND 75-0431
,
1975
).
46.
R. E.
Sheldahl
, “
Aerodynamic characteristics of seven airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of vertical axis wind turbines
,”
Technical Report No. SAND80-2114
,
1981
.
47.
M.
Islam
,
S. K.
Ting
, and
A.
Fartaj
, “
Desirable airfoil features for smaller-capacity straight-bladed VAWT
,”
Wind Eng.
31
(
3
),
165
196
(
2007
).
You do not currently have access to this content.