Unlike horizontal axis turbines, the Darrieus-type wind turbines have less efficiency and suffer from the self-starting inability. The effects of fixed and variable blade pitch angle as an idea for improving the performance of Darrieus turbine have been investigated using the CFD analysis, and a pitching system (variable pitch Darrieus-type wind turbine) has been proposed that can reduce both the blades oscillating motion and the magnitude of angle of attack in one revolution compared to that of the Darrieus-type wind turbines. In this study, the method of computational fluid dynamics with moving mesh has been used for analyzing the unsteady two-dimensional flow simulation. The numerical results show that the SST k-ω turbulence model matches well with the experimental results and can capture the flow separation phenomenon at low tip speed ratios. Also, it was observed that a small negative fixed pitch angle of −3° can delay the separation and improve the performance of wind turbine. The numerical simulation also showed that the variable-pitch blade turbine can reduce or eliminate the flow separation on its blades at a lower tip speed ratios than that of the fixed pitch blades. This result increases the starting torque and obtaining high efficiency with decreasing in torque ripple on blades during the turbine operation compared to that of the fixed-pitch blade Darrieus turbine.

1.
Amet
,
E.
,
Maître
,
T.
,
Pellone
,
C.
, and
Achard
,
J.-L.
, “
2D numerical simulations of blade-vortex interaction in a Darrieus turbine
,”
J. Fluids Eng.
131
(
11
),
111103
(
2009
).
2.
Ansys, Inc.
, Ansys Fluent Theory Guide, Release 13.0, USA (
2010
), Vol. 44–85, p.
115
.
4.
Beri
,
H.
and
Yao
,
Y.
, “
Effect of camber airfoil on self-starting of vertical axis wind turbine
,”
J. Environ. Sci. Technol.
4
(
3
),
302
312
(
2011
).
5.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
, “
Vertical axis wind turbine—A review of various configurations and design techniques
,”
Renewable Sustainable Energy Rev.
16
(
4
),
1926
1939
(
2012
).
6.
Castelli
,
M. R.
,
Englaro
,
A.
, and
Benin
,
E.
, “
The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD
,”
Energy
36
(
8
),
4919
4934
(
2011
).
7.
Claessens
,
M. C.
, “
The design and testing of airfoils in small vertical axis wind turbines
,” M.S. thesis (
Delft University of Technology
, Delft, The Netherlands,
2006
).
8.
Dominy
,
R.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
, “
Self-starting capability of a Darrieus turbine
,”
Proc. Inst. Mech. Eng., Part A
221
(
1
),
111
120
(
2007
).
9.
Eboibi
,
O.
,
Danao
,
L. A. M.
, and
Howell
,
R. J.
, “
Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds number
,”
Renewable Energy
92
,
474
483
(
2016
).
10.
Elkhoury
,
M.
,
Kiwata
,
T.
, and
Aoun
,
E.
, “
Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch
,”
J. Wind Eng. Ind. Aerodyn.
139
,
111
123
(
2015
).
11.
Firdaus
,
R.
,
Kiwata
,
T.
,
Kono
,
T.
, and
Nagao
,
K.
, “
Numerical and experimental studies of a small vertical-axis wind turbine with variable-pitch straight blades
,”
J. Fluid Sci. Technol.
10
(
1
),
14
29
(
2015
).
12.
Ghasemi
,
A.
, “
Computational simulation of the interaction between moving rigid bodies and two-fluid flows
,” M.S. thesis (
University of Massachusetts Dartmouth
, Dartmouth, MA,
2013
).
13.
Ghasemi
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
, “
Computational simulation of tethered under sea kites for power generation
,” in
Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition, IMECE 2015, Houston, USA
(
2015
).
14.
Ghasemi
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
, “
A nonlinear computational model of tethered underwater kites for power generation
,”
J. Fluids Eng.
138
,
121401
(
2016a
).
15.
Ghasemi
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
, “
Simulation of tethered underwater kites: Three-dimensional trajectories for power generation
,” in
Proceedings of the ASME 2016, Power and Energy, Charlotte, USA
(
2016b
).
16.
Ghasemi
,
A.
,
Pathak
,
A.
, and
Raessi
,
M.
, “
Computational simulation of the interactions between moving rigid bodies and incompressible two-fluid flows
,”
Comput. Fluids
94
,
1
13
(
2014
).
17.
Gosselin
,
R.
,
Dumas
,
G.
, and
Boudreau
,
M.
, “
Parametric study of H-Darrieus vertical axis turbines using uRANS simulations
,” in
21st Annual Conference CFD Society of Cananda, Sherbrooke, Canada
(
2013
), pp. 6–9.
18.
Hedayati
,
F.
,
Malvandi
,
A.
, and
Ganji
,
D. D.
, “
Second law analysis of fluid flow over an isothermal moving wedge
,”
Alexandria Eng. J.
53
(
1
),
1
9
(
2014
).
19.
Huang
,
S. R.
,
Ma
,
Y. H.
,
Chen
,
C. F.
,
Seki
,
K.
, and
Aso
,
T.
, “
Theoretical and conditional monitoring of a small three-bladed vertical-axis micro-hydro turbine
,”
Energy Convers. Manage.
86
,
727
734
(
2014
).
20.
Ismail
,
M. F.
and
Vijayaraghavan
,
K.
, “
Investigation of flow over an oscillating aerofoil for wind turbine application
,” in
Canadian Society for Mechanical Engineering (CSME) International Congress, Toronto, Canada
(
2014
).
21.
Kirke
,
B. K.
, “
Evaluation of self-starting vertical axis wind turbines for stand-alone applications
,” Ph.D. thesis (
Griffith University Gold Coast
, Brisbane, Australia,
1998
).
22.
Kozak
,
P.
, “
Effects of unsteady aerodynamics on vertical-axis wind turbine performance
,” M.S. thesis (
Illinois Institute of Technology
, Illinois, USA,
2014
).
23.
Lian
,
Y.
,
Steen
,
J.
,
Trygg-Wilander
,
M.
, and
Shyy
,
W.
, “
Low Reynolds number turbulent flows around a dynamically shaped airfoil
,”
Comput. Fluids
32
(
3
),
287
303
(
2003
).
24.
McLaren
,
K.
,
Tullis
,
S.
, and
Ziada
,
S.
, “
Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine
,”
Wind Energy
15
(
3
),
349
361
(
2012
).
25.
Mohamed
,
M.
,
Ali
,
A.
, and
Hafiz
,
A.
, “
CFD analysis for H-rotor Darrieus turbine as a low-speed wind energy converter
,”
Eng. Sci. Technol. Int. J.
18
(
1
),
1
13
(
2015
).
26.
Paraschivoiu
,
I.
,
Trifu
,
O.
, and
Saeed
,
F.
, “
H-Darrieus wind turbine with blade pitch control
,”
Int. J. Rot. Mach.
2009
,
1
7
.
27.
Pawsey
,
N. C. K.
, “
Development and evaluation of passive variable pitch vertical axis wind turbines
,” Ph.D. thesis (
University of New South Wales
, Sydney, Australia,
2002
).
28.
Sengupta
,
A.
,
Biswas
,
A.
, and
Gupta
,
R.
, “
Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams
,”
Renewable Energy
93
,
536
547
(
2016
).
29.
Soerensen
,
J. N.
, “
VISCWIND, “Viscous Effects on Wind Turbine Blades,”
final report on the JOR3-CT95-0007
, Joule III project, Technical Report No. ET-AFM-9902, Technical University of Denmark (
1999
).
30.
Spera
,
D. A.
,
Wind Turbine Technology
, 2nd ed. (
ASME Press
,
2009
), Chap. 5, pp.
329
344
.
31.
Wang
,
Y.
,
Sun
,
X.
,
Dong
,
X.
,
Zhu
,
B.
,
Huang
,
D.
, and
Zheng
,
Z.
, “
Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades
,”
Energy Convers. Manage.
108
,
275
286
(
2016
).
32.
Watson
,
G. R.
, “
The self-starting capabilities of low solidity fixed pitch Darrieus rotor
,” in
Proceedings of the Wind Energy Association Workshop, Cranfield, Beds, UK
(
1979
), pp.
32
39
.
33.
Winchester
,
J.
and
Quayle
,
S.
, “
Torque ripple and variable blade force: A comparison of Darrieus and Gorlov-type turbines for tidal stream energy conversion
,” in
Proceedings of 8th European Wave and Tidal Energy Conference
(Uppsala, Sweden,
2009
).
34.
Xisto
,
C. M.
,
Páscoa
,
J. C.
,
Leger
,
J. A.
, and
Trancossi
,
M.
, “
Wind energy production using an optimized variable pitch vertical axis rotor
,” in
Proceedings of Mechanical Engineers
(The American Society of Mechanical Engineers, Montreal, Canada,
2014
).
35.
Zamani
,
M.
,
Maghrebi
,
M. J.
, and
Moshizi
,
S. A.
, “
Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine
,”
Wind Struct.
22
(
5
),
595
616
(
2016a
).
36.
Zamani
,
M.
,
Maghrebi
,
M. J.
, and
Varedi
,
S. R.
, “
Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation
,”
Renewable Energy
95
,
109
126
(
2016b
).
37.
Zhang
,
L. X.
,
Liang
,
Y. B.
,
Liu
,
X. H.
, and
Guo
,
J.
, “
Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine
,”
J. Cent. South Univ. Technol.
21
,
1417
1427
(
2014
).
You do not currently have access to this content.