The environmental concerns are gaining importance nowadays for power producing companies in the context of clean energy act. The efforts of reducing the harmful emissions beyond a certain level are being made by most of the power utilities in the developing countries. Consequently, the minimization of harmful emissions has also become an important objective function while solving the hydrothermal scheduling problem. The heuristic approaches are considered as potential solution methodologies for non-convex hydrothermal scheduling. This paper presents an Evaporation Rate based Water Cycle Algorithm (ERWCA) for the solution of non-convex Environmental Economic Scheduling of Hydrothermal Energy Systems (EESHES). This algorithm has been evolved from the water cycle nature of raining, formation of streams, and their movement towards the rivers and finally into the sea. ERWCA has been investigated on the standard test system of EESHES with three case studies: (i) Economic Cost Scheduling, (ii) Environmental Economic Scheduling, (iii) Economic Environmental and Cost Scheduling. The comparison of obtained results with the recent results in the literature shows the superiority of ERWCA in terms of both lower fuel cost and fuel emissions. Hence, ERWCA is a worthwhile addition to the algorithms which have successfully solved this complex and combinatorial bi-objective optimization problem.

1.
J. H.
Talaq
,
F.
El-Hawary
, and
M. E.
El-Hawary
,
IEEE Trans. Power Syst.
9
(
3
),
1508
1516
(
1994
).
2.
M.
Basu
,
Int. J. Electr. Power Energy Syst.
27
(
2
),
147
153
(
2005
).
3.
I.
Farhat
and
M.
El-Hawary
, in
IEEE Canadian Conference on Electrical and Computer Engineering, Montreal, Canada
(
2012
).
4.
C.
Li
,
J.
Zhou
,
P.
Lu
, and
C.
Wang
,
Energy Convers. Manage.
89
,
127
136
(
2015
).
5.
H.
Tian
,
X.
Yuan
,
B.
Ji
, and
Z.
Chen
,
Energy Convers. Manage.
81
,
504
519
(
2014
).
6.
M.
Abido
,
IEEE Trans. Power Syst.
18
(
4
),
1529
1537
(
2003
).
7.
C.-L.
Chiang
,
Int. J. Electr. Power Energy Syst.
29
(
6
),
462
469
(
2007
).
8.
C. L.
Chiang
,
J. H.
Liaw
, and
C. T.
Su
,
Eur. Trans. Electr. Power
15
(
4
),
381
395
(
2005
).
9.
L.
Wang
and
C.
Singh
,
Eng. Appl. Artif. Intell.
22
(
2
),
298
307
(
2009
).
10.
S.
Lu
,
C.
Sun
, and
Z.
Lu
,
Energy Convers. Manage.
51
(
3
),
561
571
(
2010
).
11.
K.
Mandal
and
N.
Chakraborty
,
Energy Convers. Manage.
50
(
1
),
97
104
(
2009
).
12.
A.
Glotić
and
A.
Zamuda
,
Appl. Energy
141
,
42
56
(
2015
).
13.
A.
Sadollah
,
H.
Eskandar
, and
J. H.
Kim
,
Appl. Soft Comput.
27
,
279
298
(
2015
).
14.
A.
Sadollah
,
H.
Eskandar
,
A.
Bahreininejad
, and
J. H.
Kim
,
Appl. Soft Comput.
30
,
58
71
(
2015
).
15.
A.
Sadollah
,
Y.
Do Guen
,
J.
Yazdi
,
J. H.
Kim
, and
Y.
Choi
, in
11th International Conference on Hydroinformatics, HIC
2014, New York City, USA (
2014
).
16.
O. B.
Haddad
,
M.
Moravej
, and
H. A.
Loáiciga
,
J. Irrig. Drain. Eng.
141
(5),
04014064
(
2015
).
17.
A.
Sadollah
,
J. H.
Kim
,
H.
Eskandar
, and
D. G.
Yoo
,
paper presented at the 2013 Fourth Global Congress on Intelligent Systems (GCIS)
(
2013
).
18.
H.
Eskandar
,
A.
Sadollah
, and
A.
Bahreininejad
,
Int. J. Optim. Civ. Eng.
3
(
1
),
115
129
(
2013
).
19.
P. S.
Kulkarni
,
A. G.
Kothari
, and
D. P.
Kothari
,
Electr. Mach. Power Syst.
28
(
1
),
31
44
(
2000
).
20.
M.
Basu
,
Electr. Power Syst. Res.
69
(
2
),
277
285
(
2004
).
21.
K.
Mandal
and
N.
Chakraborty
,
Appl. Soft Comput.
11
(
1
),
1295
1302
(
2011
).
22.
C.
Sun
and
S.
Lu
,
Expert Syst. Appl.
37
(
6
),
4232
4241
(
2010
).
23.
K. K.
Mandal
and
N.
Chakraborty
,
Expert Syst. Appl.
39
(
3
),
3438
3445
(
2012
).
You do not currently have access to this content.