During scale-up of microbial fuel cell (MFC), a proportional increment in power does not usually occur determining the importance of maximum possible anode chamber volume (Van) to exploit electrogenesis and achieve maximum energy recovery. A systematic approach is proposed for determining the optimal single anode chamber volume and the minimum anode surface area (Aan) of an MFC. The optimal anode chamber volume was estimated based on the substrate required to produce a defined maximum current that is likely to be produced from the basic electromotive force equation. The Aan was obtained by considering the area required for biofilm formation, the substrate utilization rate by electrogens, the MFC polarization curve, charge transfer kinetics and mass transport overpotential. Based on the theoretical bio-electrochemical considerations, the maximum Van and minimum Aan required for each anode chamber are proposed for electrogenesis to dominate. A single Van of a few litres will only be optimal for treating wastewater. With wastewater of chemical oxygen demand (COD) of 5 g l−1 and considering a Coulombic efficiency and a COD removal of 80% each, a Van of 2.02 l is optimum for a single anode chamber to produce a current up to 750 mA; which is the maximum possible current estimated from electromotive force equation. Any additional volume provided will leave the substrate unused by electrogens and encourage methanogenesis. Adopting this volume for each anode chamber in a MFC stack is recommended for treating wastewater under the assumptions of the analysis. Charge transfer kinetics dominate the minimum Aan required, which satisfies the area required for biofilm formation, MFC polarization, and mass transfer. The minimum Aan should be provided in a MFC to ensure the dominance of electrogenesis.

1.
V. B.
Oliveira
,
M.
Simões
,
L. F.
Melo
, and
A. M. F. R.
Pinto
,
Biochem. Eng. J.
73
,
53
64
(
2013
).
2.
R. P.
Pinto
, Ph.D. thesis, Université De Montréal, Canada,
2011
.
3.
A. K.
Marcus
,
C. I.
Torres
, and
B. E.
Rittmann
,
Biotechnol. Bioeng.
98
(
6
),
1171
1182
(
2007
).
4.
C.
Picioreanu
,
K.
Katuri
,
I.
Head
,
M.
Van Loosdrecht
, and
K.
Scott
,
Water Sci. Technol.
57
(
7
),
965
(
2008
).
5.
Q.
Wen
,
Y.
Wu
,
D.
Cao
,
L.
Zhao
, and
Q.
Sun
,
Bioresour. Technol.
100
(
18
),
4171
4175
(
2009
).
6.
J. J.
Fornero
,
M.
Rosenbaum
, and
L. T.
Angenent
,
Electroanalysis
22
(
7–8
),
832
843
(
2010
).
7.
A.
Dewan
,
H.
Beyenal
, and
Z.
Lewandowski
,
Environ. Sci. Technol.
42
(
20
),
7643
7648
(
2008
).
8.
B. V.
Merkey
and
D. L.
Chopp
,
Bull. Math. Biol.
74
(
4
),
834
857
(
2012
).
9.
P.-Y.
Zhang
and
Z.-L.
Liu
,
J. Power Sources
195
(
24
),
8013
8018
(
2010
).
10.
B. E.
Logan
,
Microbial Fuel Cell
, 1st ed. (
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2008
).
11.
J. P.
Salvador
,
S.
Ganapathy
,
K.
Mallavarapu
,
F. X.
Leo
, and
B.
Lakshmanan
, U.S. patent No. 8,192,879 (5 June
2012
).
12.
M. M.
Ghangrekar
and
A. N.
Ghadge
, “
Scaling-up of microbial fuel cell using clay membrane separator and non-catalyzed electrode materials
,” in
Advances in Industrial Biotechnology
, edited by
R. R.
Singh
,
A.
Pandey
, and
C.
Larroche
(
I K International Publishing House
,
New Delhi, India
,
2013
), pp.
45
57
.
13.
A.
TerHeijne
,
F.
Liu
,
L. S.
van Rijnsoever
,
M.
Saakes
,
H. V. M.
Hamelers
, and
C. J. N.
Buisman
,
J. Power Sources
196
(
18
),
7572
7577
(
2011
).
14.
G.
Reguera
,
K. P.
Nevin
,
J. S.
Nicoll
,
S. F.
Covalla
,
T. L.
Woodard
, and
D. R.
Lovley
,
Appl. Environ. Microbiol.
72
(
11
),
7345
7348
(
2006
).
15.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
Wiley
,
New York
2001
).
16.
M.
Vaszilcsin
and
N.
Nemes
,
Introduction to Electrochemistry by Problems
(
EdituraPolitehnica
,
Timisoara, Romania
,
2009
).
17.
D. S.
Aaron
, Ph.D. thesis, Georgia Institute of Technology, USA,
2010
.
18.
C.
Comninellis
and
G.
Chen
,
Electrochemistry for the Environment
(
Springer
,
New York, Dordrecht, Heidelberg, London
,
2010
).
19.
G.
Jadhav
and
M.
Ghangrekar
,
Appl. Biochem. Biotechnol.
151
(
2–3
),
319
332
(
2008
).
20.
APHA
,
AWWA
, and
WPCF
,
Standard Methods for Examination of Water and Wastewater
, 20th ed. (
American Public Health Association
,
Washington, DC
,
1998
).
21.
V. J.
Watson
and
B. E.
Logan
,
Electrochem. Commun.
13
(
1
),
54
56
(
2011
).
22.
V.
Khomenko
,
E.
Frackowiak
, and
F.
Beguin
,
Electrochim. Acta
50
(
12
),
2499
2506
(
2005
).
23.
Y.
Feng
,
W.
He
,
J.
Liu
,
X.
Wang
,
Y.
Qu
, and
N.
Ren
,
Bioresour. Technol.
156
,
132
138
(
2014
).
24.
A. N.
Ghadge
and
M. M.
Ghangrekar
,
Bioresour. Technol.
182
,
373
377
(
2015
).
25.
J. M.
Sonawane
,
A.
Gupta
, and
P. C.
Ghosh
,
Int. J. Hydrogen Energy
38
(
12
),
5106
5114
(
2013
).
26.
S.
Srinivasan
,
Fuel Cells: From Fundamentals to Applications
(
Springer
,
USA
,
2006
).
27.
D.
Noren
and
M.
Hoffman
,
J. Power Sources
152
,
175
181
(
2005
).
28.
A.
Janicek
,
Y.
Fan
, and
H.
Liu
,
Biofuels
5
(
1
),
79
92
(
2014
).
29.
C. I.
Torres
,
A. K.
Marcus
,
P.
Parameswaran
, and
B. E.
Rittmann
,
Environ. Sci. Technol.
42
(
17
),
6593
6597
(
2008
).
30.
T.
Sharma
,
A. L.
Mohana Reddy
,
T. S.
Chandra
, and
S.
Ramaprabhu
,
Int. J. Hydrogen Energy
33
(
22
),
6749
6754
(
2008
).
31.
Y.
Qiao
,
C. M.
Li
,
S.-J.
Bao
, and
Q.-L.
Bao
,
J. Power Sources
170
(
1
),
79
84
(
2007
).
32.
M.
Zhou
,
M.
Chi
,
J.
Luo
,
H.
He
, and
T.
Jin
,
J. Power Sources
196
(
10
),
4427
4435
(
2011
).
33.
A. N.
Ghadge
and
M.
Ghangrekar
,
Electrochim. Acta
166
,
320
328
(
2015
).

Supplementary Material

You do not currently have access to this content.