The paper estimates solar radiation in the Southern areas of Pakistan using the climate data of thirty years (1981–2010) for 25 meteorological stations located in the three provinces of Pakistan, i.e., Baluchistan, Punjab, and Sindh. For this purpose, five different radiation models are designed: Sunshine hour-based model, Temperature-based model, Cloud-based model, Meteorological parameters-based model, and Meteorological and Geographical Parameters-based Model. The forecasting efficiency of these models is evaluated using mean predicted errors and Theil inequality coefficient. The results reveal that the Meteorological and Geographical parameters-based models are the most accurate methods for estimating solar radiation in Pakistan. Forecasting efficiency results show that the estimates of solar radiation of all the models is much better for Baluchistan as compared to Punjab and Sindh.

1.
Abbasi
,
A. A.
and
Qureshi
,
M. S.
, “
Estimation of global and diffuse solar radiation for Nawabshah, Sindh, Pakistan
,”
Inf. Dig. Energy Environ.
11
(
4
),
499
506
(
2012
).
2.
Adnan
,
S.
,
Khan
,
A. H.
,
Haider
,
S.
, and
Mahmood
,
R.
, “
Solar energy potential in Pakistan
,”
J. Renewable Sustainable Energy
4
(
3
),
032701
032707
(
2012
).
3.
Ahmad
,
F.
and
Ulfat
,
I.
, “
Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan
,”
Turk. J. Phys.
28
,
301
307
(
2004
).
4.
Ajayi
,
O. O.
,
Ohijeagbon
,
O. D.
,
Nwadialo
,
C. E.
, and
Olasope
,
O.
, “
New model to estimate daily global solar radiation over Nigeria
,”
Sustainable Energy Technol. Assess.
5
,
28
36
(
2014
).
5.
Angstrom
,
A.
, “
Solar and terrestrial radiation
,”
Q. J. R. Meteorol. Soc.
50
,
121
125
(
1924
).
6.
Badescu
,
V.
, “
Correlations to estimate monthly mean daily solar global irradiation: Application to Romania
,”
Energy
24
(
10
),
883
893
(
1999
).
7.
Besharat
,
F.
,
Dehghan
,
A. A.
, and
Faghih
,
A. R.
, “
Empirical models for estimating global solar radiation: A review and case study
,”
Renewable Sustainable Energy Rev.
21
,
798
821
(
2013
).
8.
Gadiwala
,
M. S.
,
Usman
,
A.
,
Akhtar
,
M.
, and
Jamil
,
K.
, “
Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface in various cities of Pakistan
,”
Pakistan J. Meteorol.
9
(
18
),
43
49
(
2013
).
9.
Hargreaves
,
G. H.
and
Samani
,
Z. A.
, “
Estimating potential evapotranspiration
,”
J. Irrig. Drain. Div.
108
(
3
),
223
230
(
1982
).
10.
Hausman
,
J. A.
, “
Specification tests in econometrics
,”
Econometrica
46
(
6
),
1251
1271
(
1978
).
11.
Hepbasli
,
A.
and
Alsuhaibani
,
Z.
, “
A key review on present status and future directions of solar energy studies and applications in Saudi Arabia
,”
Renewable Sustainable Energy Rev.
15
,
5021
5050
(
2011
).
12.
Li
,
H.
,
Cao
,
F.
,
Wang
,
X.
, and
Ma
,
W.
, “
A temperature-based model for estimating monthly average daily global solar radiation in China
,”
Sci. World J.
2014
,
1
9
.
13.
Maghrabi
,
A. H.
, “
Parameterization of a simple model to estimate monthly global solar radiation based on meteorological variables, and evaluation of the existing solar radiation models for Tabouk, Saudi Arabia
,”
Energy Convers. Manage.
50
,
2754
2760
(
2009
).
14.
Mohammadi
,
K.
,
Shamshirband
,
S.
,
Petkovic
,
D.
, and
Khorasanizadeh
,
H.
, “
Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran
,”
Renewable Sustainable Energy Rev.
53
,
1570
1579
(
2016
).
15.
Olatomiwa
,
L.
,
Mekhilef
,
S.
,
Shamshirband
,
S.
, and
Petkovic
,
D.
, “
Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria
,”
Renewable Sustainable Energy Rev.
51
,
1784
1791
(
2015
).
16.
Pindyck
,
R. S.
and
Rubinfeld
,
D. L.
,
Econometric Models and Economic Forecasts
, 5th ed. (
McGraw Hill Higher Education
,
2016
).
17.
Poudyal
,
K. N.
,
Bhattarai
,
B. K.
,
Sapkota
,
B.
, and
Kjeldstad
,
B.
, “
Estimation of global solar radiation using clearness index and cloud transmittance factor at trans-Himalayan region in Nepal
,”
Energy Power Eng.
4
(
6
),
415
421
(
2012
).
18.
Prescott
,
J.
, “
Evaporation from water surface in relation to solar radiation
,”
Trans. R. Soc. Aust.
46
,
114
118
(
1940
).
19.
Romana
,
A.
,
Xinfa
,
Q.
,
Ahmad
,
I.
, and
Sultan
,
S.
, “
Impact of landforms on the spatial distribution of extraterrestrial solar radiation in the months of March and September: A geographical approach
,”
Pak. J. Meteorol.
9
(
17
),
1
9
(
2012
).
20.
Shamshirband
,
S.
,
Mohammadi
,
K.
,
Chen
,
H.-L.
,
Samy
,
G. N.
,
Petkovic
,
D.
, and
Ma
,
C.
, “
Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran
,”
J. Atmos. Sol.-Terr. Phys.
134
,
109
117
(
2015a
).
21.
Shamshirband
,
S.
,
Mohammadi
,
K.
,
Yee
,
P. L.
,
Petkovic
,
D.
, and
Mostafaeipour
,
A.
, “
A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation
,”
Renewable Sustainable Energy Rev.
52
,
1031
1042
(
2015b
).
22.
Skeiker
,
K.
, “
Correlation of global solar radiation with common geographical and meteorological parameters for Damascus province, Syria
,”
Energy Convers. Manage.
47
,
331
345
(
2006
).
23.
Theil
,
H.
,
Applied Economic Forecasting
(
North Holland
,
Amsterdam
,
1966
).
24.
Ulfat
,
I.
,
Abbasi
,
F. A.
,
Kanwal
,
F.
,
Usman
,
A.
,
Jahangir
,
M.
, and
Ahmed
,
F.
, “
Estimation of solar energy potential for Islamabad, Pakistan
,”
Energy Procedia
18
,
1496
1500
(
2012
).
25.
Yorukoglu
,
M.
and
Celik
,
A. N.
, “
A critical review on the estimation of daily global solar radiation from sunshine duration
,”
Energy Convers. Manage.
47
(
15
),
2441
2450
(
2006
).
You do not currently have access to this content.