Thermal characteristics of a mobile thermal battery, consisting of a steel tube, metallic meshes, and the phase change material, are investigated. Concentrated solar heating of the steel tube is considered and the governing equations of heat transfer and the flow field, due to the natural convection, are solved numerically. Lithium nitrate is used as a phase change material due to its high latent heat of melting and aluminum is used as the metallic mesh material. The maximum and minimum temperature difference in the tube is predicted and the temperature parameter is introduced to assess the thermal storage performance of the mobile thermal battery. The numerical code is validated with the data reported in the early study and findings revealed that both results are in good agreement. It is found that temperature predictions agree well with the previous data. The use of metallic meshes inside the steel tube significantly improves the heat conduction in the phase change material. In this case, almost uniform temperature distribution is achieved inside the tube during the cycle of thermal energy storage. Sensible heating in the liquid phase of the phase change material results in the increase in the localized excessive temperature, which has an adverse effect on achieving a uniform temperature distribution inside the thermal battery.

1.
K.
Mina
, “
The heat battery: Solar thermal energy storage for heating loads
,” in
Proceedings of the 2012 IEEE Electrical Power and Energy Conference, EPEC 2012
(
2012
), pp.
311
314
.
2.
R. A.
Taylor
,
D.
Chung
,
K.
Morrison
, and
E.
Hawkes
, “
Modeling and testing of a portable thermal battery
,” in
Proceedings of the ASME 2013 Heat Transfer Summer Conference
(
2013
), p.
V001T04A003
.
3.
B. S.
Yilbas
and
O. S.
Kaleem
, “
Performance characteristics of a volumetric solar receiver: presence of an absorber plate with a selective surface
,”
Numer. Heat Transfer; Part A
67
(
9
),
992
1009
(
2015
).
4.
J. M.
Munyalo
,
X.
Zhang
,
X.
Meng
, and
W.
Hua
, “
Solar thermal energy storage analysis of medium temperature encapsulated phase change material
,”
in ACRA 2014—Proceedings of the 7th Asian Conference on Refrigeration and Air Conditioning (2014
)
.
5.
Z.
Zhou
,
Z.
Zhang
,
J.
Zuo
,
K.
Huang
, and
L.
Zhang
, “
Phase change materials for solar thermal energy storage in residential buildings in cold climate
,”
Renewable Sustainable Energy Rev.
48
,
692
703
(
2015
).
6.
G.
Raam Dheep
and
A.
Sreekumar
, “
Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications
,”
Energy Convers. Manage.
105
,
13
19
(
2015
).
7.
S.
Canbazoglu
,
A.
Sahinaslan
,
A.
Ekmekyapar
,
Y. G.
Aksoy
, and
F.
Akarsu
, “
Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system
,”
Energy Build.
37
(
3
),
235
242
(
2005
).
8.
A.
Shukla
,
D.
Buddhi
, and
R. L.
Sawhney
, “
Solar water heaters with phase change material thermal energy storage medium: A review
,”
Renewable Sustainable Energy Rev.
13
(
8
),
2119
2125
(
2009
).
9.
S.
Harikrishnan
,
S.
Magesh
, and
S.
Kalaiselvam
, “
Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanofluids as a phase change material for solar heating systems
,”
Thermochim. Acta
565
,
137
145
(
2013
).
10.
M. H.
Mahfuz
,
M. R.
Anisur
,
M. A.
Kibria
,
R.
Saidur
, and
I. H. S. C.
Metselaar
, “
Performance investigation of thermal energy storage system with phase change material (PCM) for solar water heating application
,”
Int. Commun. Heat Mass Transfer
57
,
132
139
(
2014
).
11.
K.
Nithyanandam
and
R.
Pitchumani
, “
Optimization of an encapsulated phase change material thermal energy storage system
,”
Sol. Energy
107
,
770
788
(
2014
).
12.
R.-L.
Zeng
,
X.
Wang
,
Y.-P.
Zhang
,
H.-F.
Di
, and
Q-L.
Zhang
, “
Numerical study of thermal performance of phase change material energy storage floor in solar water heating system
,”
J. Hunan Univ. Nat. Sci.
36
(SUPPL.),
141
145
(
2009
).
13.
S.
Esakkimuthu
,
A. H.
Hassabou
,
C.
Palaniappan
,
M.
Spinnler
,
J.
Blumenberg
, and
R.
Velraj
, “
Experimental investigation on phase change material based thermal storage system for solar air heating applications
,”
Sol. Energy
88
,
144
153
(
2013
).
14.
M. R.
Gilpin
,
D. B.
Scharfe
, and
M. P.
Young
, “
Phase-change thermal energy storage and conversion: Development and analysis for solar thermal propulsion
,” in
Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
(
2012
).
15.
A.
Sari
,
C.
Alkan
,
A.
Biçer
,
A.
Altuntas
, and
C.
Bilgin
, “
Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage
,”
Energy Convers. Manage.
86
,
614
621
(
2014
).
16.
F.
Roget
,
C.
Favotto
, and
J.
Rogez
, “
Study of the KNO3-LiNO3 and KNO3-NaNO3-LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant
,”
Sol. Energy
95
,
155
169
(
2013
).
17.
A. F.
Elmozughi
,
L.
Solomon
,
A.
Oztekin
, and
S.
Neti
, “
Encapsulated phase change material for high temperature thermal energy storage—Heat transfer analysis
,”
Int. J. Heat Mass Transfer
78
,
1135
1144
(
2014
).
18.
Z.
Wu
and
Z.
Wang
, “
Fully coupled transient modeling of ceramic foam volumetric solar air receiver
,”
Sol. Energy
89
,
122
133
(
2013
).
19.
S.
Cingarapu
,
D.
Singh
,
E. V.
Timofeeva
, and
M. R.
Moravek
, “
Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage
,”
Int. J. Energy Res.
38
(
1
),
51
59
(
2014
).
20.
O. K.
Siddiqui
and
B. S.
Yilbas
, “
Thermal characteristics of a volumetric solar absorption system
,”
Int. J. Energy Res.
38
(
5
),
581
591
(
2014
).
21.
S. Z.
Shuja
and
B. S.
Yilbas
, “
Latent heat thermal energy storage: effect of metallic mesh size on storage time and capacity
,”
Int. J. Thermophys.
36
,
2985
3000
(
2015
).
22.
See http://www.nrel.gov/csp/troughnet/pdfs/lupfert_receiver_thermal_prop.pdf for Solar power intensity distribution,
2015
.
24.
Z. F.
Huang
,
A.
Nakayama
,
K.
Yang
,
C.
Yang
, and
W.
Liu
, “
Enhancing heat transfer in the core flow by using porous medium insert in a tube
,”
Int. J. Heat Mass Transfer
53
(
5–6
),
1164
1174
(
2010
).
You do not currently have access to this content.