This study presents full transient numerical simulations of a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type) with particular emphasis on the analysis of hydrodynamic characteristics. Turbine design and performance are studied using a time-accurate Reynolds-averaged Navier–Stokes commercial solver. A physical transient rotor-stator model with a sliding mesh technique is used to capture changes in flow field at a particular time step. A shear stress transport k-ω turbulence model was initially employed to model turbulent features of the flow. Two dimensional simulations are used to parametrically study the influence of selected geometrical parameters of the airfoil (camber, thickness, and symmetry-asymmetry) on the performance prediction (torque and force coefficients) of the turbine. As a result, torque increases with blade thickness-to-chord ratio up to 15% and camber reduces the average load in the turbine shaft. Additionally, the influence of blockage ratio, profile trailing edge geometry, and selected turbulence models on the turbine performance prediction is investigated.

1.
Black and Veatch Consulting Ltd.
,
UK, Europe and Global Tidal Stream Energy Resource Assessment
(
Carbon Trust
,
London
,
2004
).
2.
D.
Kerr
,
Mar. Energy Philos. Trans. R. Soc. A
365
,
971
992
(
2007
).
3.
IRENA
, See http://www.irena.org/DocumentDownloads/Publications/Tidal_Energy_V4_WEB.pdf for Tidal Energy, Technology Brief,
2014
.
4.
J.
Dabiri
, “
Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays
,”
J. Renewable Sustainable Energy
3
,
043104
(
2011
).
5.
K.
Duraisamy
and
V.
Lakshminarayan
, “
Flow physics and performance of vertical axis wind turbine arrays
,” AIAA Paper No. 2014-3139, 2014.
6.
D. P.
Coiro
,
A.
De Marco
,
F.
Nicolosi
,
S.
Melone
, and
F.
Montella
, “
Dynamic behaviour of the patented kobold tidal current turbine: Numerical and experimental aspects
,”
Acta Polytech.
45
,
77
84
(
2005
).
7.
S.
Laín
,
M.
García
,
B.
Quintero
, and
S.
Orrego
, “
CFD numerical simulation of Francis turbines
,”
Rev. Fac. Ing. Univ. Antioquia
51
,
21
33
(
2010
).
8.
S.
Laín
and
R.
Aliod
, “
Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments
,”
Int. J. Heat Fluid Flow
21
,
374
380
(
2000
).
9.
M. F.
Göz
,
S.
Laín
, and
M.
Sommerfeld
, “
Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow
,”
Comput. Chem. Eng.
28
,
2727
2733
(
2004
).
10.
C. J. S.
Ferreira
, “
The near wake of the VAWT. 2D and 3D views of the VAWT aerodynamics
,” Ph.D. thesis (
Delft University of Technology
,
2009
).
11.
T.
Maître
,
J. L.
Achard
,
L.
Guitet
, and
C.
Ploesteanu
, “
Marine turbine development: Numerical and experimental investigations
,”
Sci. Bull.
50
,
59
66
(
2005
).
12.
A.
Laneville
and
P.
Vittecoq
, “
Dynamic stall: The case of the vertical axis wind turbine
,”
J. Sol. Energy Eng.
108
,
140
145
(
1986
).
13.
R.
Howell
,
N.
Qin
,
J.
Edwards
, and
N.
Durrani
, “
Wind tunnel and numerical study of a small vertical axis wind turbine
,”
Renewable Energy
35
,
412
422
(
2010
).
14.
Y.
Nabavi
, “
Numerical study of the duct shape effect on the performance of a ducted vertical axis tidal turbine
,” M.Sc. thesis (
British Columbia University
,
2008
).
15.
Y. M.
Dai
and
W.
Lam
, “
Numerical study of straight-bladed Darrieus-type tidal turbine
,”
ICE-Energy
162
,
67
76
(
2009
).
16.
E.
Amet
,
T.
Maître
,
C.
Pellone
, and
J. L.
Achard
, “
2D numerical simulations of blade-vortex interaction in a Darrieus turbine
,”
J. Fluids Eng.
131
,
111103
(
2009
).
17.
P.
Fraunie
,
C.
Beguier
,
I.
Paraschivoiu
, and
G.
Brochier
, , “
Water channel experiments of dynamic stall on Darrieus wind turbine blades
,”
J. Propul. Power
2
(
5
),
445
449
(
1986
).
18.
N.
Fujisawa
and
S.
Shibuya
, “
Observations of dynamic stall on Darrieus wind turbine blades
,”
J. Wind Eng. Ind. Aerodyn.
89
,
201
214
(
2001
).
19.
Y.
Li
and
S. M.
Calisal
, “
Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine
,”
Renewable Energy
35
,
2325
2334
(
2010
).
20.
D. P.
Coiro
,
F.
Nicolosi
,
A.
De Marco
,
S.
Melone
, and
F.
Montella
, “
Dynamic behavior of novel vertical axis tidal current turbine: Numerical and experimental investigations
,” in
Proceedings of the International Offshore and Polar Engineering Conference
(
2005
), pp.
469
476
.
21.
T.
Maître
,
E.
Amet
, and
C.
Pellone
, “
Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments
,”
Renewable Energy
51
,
497
512
(
2013
).
22.
E.
Amet
, “
Simulation Numérique d'une Hydrolienne à Axe Vertical de Type Darrieus
,” Ph.D. thesis (
Institut Polytechnique de Grenoble
,
2009
).
23.
X.
Jin
,
G.
Zhao
,
K.
Gao
, and
W.
Ju
, “
Darrieus vertical axis wind turbine: Basic research methods
,”
Renewable Sustainable Energy Rev.
42
,
212
225
(
2015
).
24.
C.
Song
,
Y.
Zheng
,
Z.
Zhao
,
Y.
Zhang
,
C.
Li
, and
H.
Jiang
, “
Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines
,”
J. Renewable Sustainable Energy
7
,
033111
(
2015
).
25.
R.
Lanzafame
,
S.
Mauro
, and
M.
Messina
, “
2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model
,”
Energy Procedia
45
,
131
140
(
2014
).
26.
Y.
Chen
and
Y.
Lian
, “
Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine
,”
Eng. Appl. Comput. Fluid Mech.
9
,
21
32
(
2015
).
27.
F.
Trivellato
and
M.
Raciti Castelli
, “
On the courant-Friedrichs-Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis
,”
Renewable Energy
62
,
53
62
(
2014
).
28.
B.
Paillard
,
J.
Astolfi
, and
F.
Hauville
, “
URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: Sinusoidal pitch function investigation
,”
Int. J. Mar. Energy
11
,
9
26
(
2015
).
29.
J.
Larsen
,
S.
Nielsen
, and
S.
Krenk
, “
Dynamic stall model for wind turbine airfoils
,”
J. Fluids Struct.
23
,
959
982
(
2007
).
30.
R.
Nobile
,
M.
Vahdati
,
J.
Barlow
, and
A.
Mewburn-Crook
, “
Dynamic stall for a vertical axis wind turbine in a two-dimensional study
,” in
World Renewable Energy Congress 2011, Lindköping, Sweden, 8–13 May
(
2011
), pp.
4225
4232
.
31.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
32.
P. J.
Roache
,
Verification and Validation in Computational Science and Engineering
(
Hermosa Publishers
,
Albuquerque
,
1998
).
33.
B. E.
Launder
,
G. J.
Reece
, and
W.
Rodi
, “
Progress in the development of a Reynolds-stress turbulence closure
,”
J. Fluid Mech.
,
68
,
537
566
(
1975
).
34.
T. H.
Shih
,
W. W.
Liou
,
A.
Shabbir
, and
J.
Zhu
, “
A new k-ε eddy-viscosity model for high Reynolds number turbulent flows—Model development and validation
,”
Comput. Fluids
24
(
3
),
227
238
(
1995
).
35.
P. R.
Spalart
and
M.
Shur
, “
On the sensitization of turbulence models to rotation and curvature
,”
Aerosp. Sci. Technol.
1
,
297
302
(
1997
).
36.
H.
Abbott
and
A.
von Doenhoff
,
Theory of Wing Sections: Including a Summary of Airfoil Data
(
Dover Publications
,
New York
,
1959
).
37.
D.
Montgomery
,
Design and Analysis of Experiments
(
Wiley
,
New York
,
2000
).
38.
J. P.
Baker
,
E. A.
Mayda
, and
C. P.
van Dam
, “
Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils
,”
J. Sol. Energy Eng.
128
,
422
431
(
2006
).
39.
P.
Moin
,
A.
Leonard
, and
J.
Kim
, “
Evolution of a curved vortex filament into a vortex ring
,”
Phys. Fluids
29
,
955
963
(
1986
).
You do not currently have access to this content.