The rapid development of wind energy in Japan and the associated high uncertainties and fluctuations in power generation present a big challenge for both wind power generators and electric grids. Accurate and reliable wind power predictions are necessary to optimize the integration of wind power into existing electrical systems. In this study, a hybrid forecasting system of wind power generation was developed by integrating the Kalman filter (KF) with the high resolution Weather Research and Forecasting (WRF) model as well as an empirical formula of wind power output (power curve). The system has been validated with observations including wind speed and power output over a six-month period for 15 turbine sites at a wind farm in Awaji-island, Japan. The results show that the tuned WRF model is able to provide hub-height wind speed prediction for the target area with reliability to some extent. The predicted wind field can be substantially improved by the Kalman filter as a post-processing procedure. The 15-turbine averaged improvements of mean error, root mean square error, and correlation coefficient are 97%, 22%, and 10%, respectively. Meanwhile, the Kalman filter also demonstrates a promising capability of reducing the uncertainties in the power curve model. Systematic validations regarding both wind speed and power output were carried out against the observations for the target wind farm, which show that the hybrid power forecasting system presented in this paper can be an effective and practical tool for short-term predictions of wind speed and power output in Japan area.

1.
World Energy Council
, see http://www.worldenergy.org/publications/2015/world-energy-issues-monitor-2015/ for 2015 World Energy Issues Monitor,
2015
.
2.
Japan for Sustainability, see http://www.japanfs.org/en/news/archives/news_id035124.html/ for current status of renewable energy in Japan,
2014
.
3.
W.-M.
Chen
,
H.
Kim
, and
H.
Yamaguchi
, “
Renewable energy in eastern Asia: Renewable energy policy review and comparative {SWOT} analysis for promoting renewable energy in Japan, South Korea, and Taiwan
,”
Energy Policy
74
,
319
329
(
2014
).
4.
M.
Kay
and
I.
MacGill
, “
Improving weather forecasts for wind energy applications
,” in
IOP Conference Series: Earth and Environmental Science
(
IOP Publishing
,
2010
), Vol. 11, p.
012009
.
5.
A.
Costa
,
A.
Crespo
,
J.
Navarro
,
G.
Lizcano
,
H.
Madsen
, and
E.
Feitosa
, “
A review on the young history of the wind power short-term prediction
,”
Renewable Sustainable Energy Rev.
12
,
1725
1744
(
2008
).
6.
G. A.
Dutton
,
G.
Kariniotakis
,
J. A.
Halliday
,
E.
Nogaret
 et al., “
Load and wind power forecasting methods for the optimal management of isolated power systems with high wind penetration
,”
Wind Eng.
23
,
69
87
(
1999
).
7.
S.
Pourmousavi Kani
and
M.
Ardehali
, “
Very short-term wind speed prediction: A new artificial neural network-Markov chain model
,”
Energy Convers. Manage.
52
,
738
745
(
2011
).
8.
E.
Erdem
and
J.
Shi
, “
ARMA based approaches for forecasting the tuple of wind speed and direction
,”
Appl. Energy
88
,
1405
1414
(
2011
).
9.
A. S.
Hering
and
M. G.
Genton
, “
Powering up with space-time wind forecasting
,”
J. Am. Stat. Assoc.
105
,
92
104
(
2010
).
10.
S.
Shimada
,
T.
Ohsawa
, and
K.
Yatsu
, “
A study on the ability of mesoscale model MM5 for offshore wind resource assessment in Japanese coastal waters
,” in
European Wind Energy Conference (EWEC)
(
2009
), Vol. 2009.
11.
H.
Sukegawa
,
T.
Ishihara
,
A.
Yamaguchi
,
Y.
Fukumoto
,
A.
Yamaguchi
,
T.
Ishihara
, and
Y.
Fujino
, “
An assessment of offshore wind energy potential using mesoscale model
,” in
Proceedings of the European Wind Energy Conference (CD-ROM)
,
Athens
,
2006
.
12.
S.
Al-Yahyai
,
Y.
Charabi
, and
A.
Gastli
, “
Review of the use of numerical weather prediction (NWP) models for wind energy assessment
,”
Renewable Sustainable Energy Rev.
14
,
3192
3198
(
2010
).
13.
G. J.
DiMego
, “
The national meteorological center regional analysis system
,”
Mon. Weather Rev.
116
,
977
1000
(
1988
).
14.
S.
Marras
,
J. F.
Kelly
,
M.
Moragues
,
A.
Müller
,
M. A.
Kopera
,
M.
Vázquez
,
F. X.
Giraldo
,
G.
Houzeaux
, and
O.
Jorba
, “
A review of element-based Galerkin methods for numerical weather prediction: Finite elements, spectral elements, and discontinuous Galerkin
,”
Arch. Comput. Methods Eng.
(published online
2015
).
15.
R.
McTaggart-Cowan
and
A.
Zadra
, “
Representing Richardson number hysteresis in the NWP boundary layer
,”
Mon. Weather Rev.
143
,
1232
1258
(
2015
).
16.
H. R.
Glahn
and
D. A.
Lowry
, “
The use of model output statistics (MOS) in objective weather forecasting
,”
J. Appl. Meteorol.
11
,
1203
1211
(
1972
).
17.
R. E.
Kalman
, “
A new approach to linear filtering and prediction problems
,”
J. Fluids Eng.
82
,
35
45
(
1960
).
18.
G.
Galanis
,
P.
Louka
,
P.
Katsafados
,
I.
Pytharoulis
, and
G.
Kallos
, “
Applications of Kalman filters based on non-linear functions to numerical weather predictions
,”
Annales Geophysicae
(
Copernicus GmbH
,
2006
), Vol. 24, pp.
2451
2460
.
19.
L.
Delle Monache
,
T.
Nipen
,
X.
Deng
,
Y.
Zhou
, and
R.
Stull
, “
Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction
,”
J. Geophys. Res.
111
,
D05308
, doi: (
2006
).
20.
P.
Louka
,
G.
Galanis
,
N.
Siebert
,
G.
Kariniotakis
,
P.
Katsafados
,
I.
Pytharoulis
, and
G.
Kallos
, “
Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
,”
J. Wind Eng. Ind. Aerodyn.
96
,
2348
2362
(
2008
).
21.
H.
Al-Hamadi
and
S.
Soliman
, “
Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
,”
Electr. Power Syst. Res.
68
,
47
59
(
2004
).
22.
B.
Smith
,
H.
Link
,
G.
Randall
, and
T.
McCoy
, “
Applicability of nacelle anemometer measurements for use in turbine power performance tests
,” in
Proceedings of the American Wind Energy Association (AWEA) WINDPOWER 2002
(
2002
).
23.
N. J.
Cutler
,
H. R.
Outhred
, and
I. F.
MacGill
, “
Using nacelle-based wind speed observations to improve power curve modeling for wind power forecasting
,”
Wind Energy
15
,
245
258
(
2012
).
24.
W.
Wang
,
C.
Bruyere
,
M.
Duda
,
J.
Dudhia
,
D.
Gill
,
H.
Lin
,
J.
Michalakes
,
S.
Rizvi
,
X.
Zhang
,
J.
Beezley
 et al.,
ARW Version 3 Modeling System User's Guide
(
Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research
,
2010
), see http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/ARWUsersGuideV3.pdf
25.
T. T.
Warner
,
R. A.
Peterson
, and
R. E.
Treadon
, “
A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction
,”
Bull. Am. Meteorol. Soc.
78
,
2599
2617
(
1997
).
26.
T. T.
Warner
, “
Quality assurance in atmospheric modeling
,”
Bull. Am. Meteorol. Soc.
92
,
1601
1610
(
2011
).
27.
S.-Y.
Hong
and
J.-O. J.
Lim
, “
The WRF single-moment 6-class microphysics scheme (WS-M6)
,”
Asia-Pac. J. Atmos. Sci.
42
,
129
151
(
2006
).
28.
E. J.
Mlawer
,
S. J.
Taubman
,
P. D.
Brown
,
M. J.
Iacono
, and
S. A.
Clough
, “
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
,”
J. Geophys. Res.: Atmos.
102
,
16663
16682
(
1997
).
29.
J.
Dudhia
, “
Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model
,”
J. Atmos. Sci.
46
,
3077
3107
(
1989
).
30.
J. S.
Kain
, “
The Kain-Fritsch convective parameterization: An update
,”
J. Appl. Meteorol.
43
,
170
181
(
2004
).
31.
F.
Chen
and
J.
Dudhia
, “
Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity
,”
Mon. Weather Rev.
129
,
569
585
(
2001
).
32.
G.
Welch
and
G.
Bishop
, “
An introduction to the Kalman filter
,” in
Proceedings of the Siggraph Course
,
Los Angeles
(
2001
).
33.
L.
Delle Monache
,
J.
Wilczak
,
S.
Mckeen
,
G.
Grell
,
M.
Pagowski
,
S.
Peckham
,
R.
Stull
,
J.
Mchenry
, and
J.
Mcqueen
, “
A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone
,”
Tellus B
60
,
238
249
(
2008
).
34.
D. J.
Stensrud
and
J. A.
Skindlov
, “
Gridpoint predictions of high temperature from a mesoscale model
,”
Weather Forecasting
11
,
103
110
(
1996
).
35.
V.
Bulaevskaya
,
S.
Wharton
,
A.
Clifton
,
G.
Qualley
, and
W.
Miller
, “
Wind power curve modeling in complex terrain using statistical models
,”
J. Renewable Sustainable Energy
7
,
013103
(
2015
).
36.
H. H.
Shin
and
S.-Y.
Hong
, “
Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99
,”
Boundary-Layer Meteorol.
139
,
261
281
(
2011
).
37.
C.
Draxl
,
A. N.
Hahmann
,
A.
Peña
, and
G.
Giebel
, “
Evaluating winds and vertical wind shear from weather research and forecasting model forecasts using seven planetary boundary layer schemes
,”
Wind Energy
17
,
39
55
(
2014
).
38.
S.
Sukoriansky
,
B.
Galperin
, and
V.
Perov
, “
A quasi-normal scale elimination model of turbulence and its application to stably stratified flows
,”
Nonlinear Processes Geophys.
13
,
9
22
(
2006
).
39.
J. E.
Pleim
, “
A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing
,”
J. Appl. Meteorol. Climatol.
46
,
1383
1395
(
2007
).
40.
G. L.
Mellor
and
T.
Yamada
, “
Development of a turbulence closure model for geophysical fluid problems
,”
Rev. Geophys.
20
,
851
875
, doi: (
1982
).
41.
Z. I.
Janjić
, “
Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model
,”
NCEP Office Note
437
,
61
(
2002
).
42.
S.-Y.
Hong
,
Y.
Noh
, and
J.
Dudhia
, “
A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes
,”
Mon. Weather Rev.
134
,
2318
2341
(
2006
).
43.
K. E.
Taylor
, “
Summarizing multiple aspects of model performance in a single diagram
,”
J. Geophys. Res.: Atmos.
106
,
7183
7192
(
2001
).
44.
L.
Delle Monache
,
T.
Nipen
,
Y.
Liu
,
G.
Roux
, and
R.
Stull
, “
Kalman filter and analog schemes to postprocess numerical weather predictions
,”
Mon. Weather Rev.
139
,
3554
3570
(
2011
).
You do not currently have access to this content.