This paper presents design studies of the gravity-based foundation for a linear generator wave energy converter. The wave energy converter is based on a direct driven generator mounted on the gravity-based foundation located at the seabed. The linear generator is connected to a point absorbing buoy on the sea surface via a connection rope. Such a device, developed at Uppsala University, has been in operation on the Swedish west coast since 2006. Study is focused on the analysis of the impact from undesirable motions of the gravity-based foundation, particularly the study of the tip and lifts phenomena with regard to the heave and surge forces. Long-term extreme significant wave heights are extrapolated from the statistical analysis of the measured wave climate data in the test site where the wave energy converter is deployed. The joint distribution of the significant wave height and the zero-crossing period from the measured wave climate is also analyzed to estimate the associated periods with respect to the long-term extreme significant wave height. The 25 years return extreme significant wave height 4.8 m which is associated with its mean zero-crossing period 8.25 s from the joint distribution is chosen to determine the characteristics of the possible maximum wave for the Lysekil test site. The estimated maximum wave 9.2 m is used to estimate the extreme values of the heave and surge forces on the wave energy converter and the gravity-based foundation. The results with respect to the foundation of a new generation wave energy converter about 35 tons with the presented methodology indicate that a heavier foundation which is about 70 tons needs to be designed in terms of considering the stability of the mooring foundation for long term real sea operation. The purpose of this paper is to propose a reliable approach to estimate the appropriate dimensions for gravity-based foundation of the linear generator wave energy converter and provides a theoretical reference to the construction of the gravity-based foundation.

1.
J.
Cruz
,
Ocean Wave Energy: Current Status and Future Perspectives
(
Springer-Verlag
,
Berlin Heidelberg
,
2008
).
3.
M.
Leijon
,
C.
Boström
,
O.
Danielsson
,
S.
Gustafsson
,
K.
Haikonen
,
O.
Langhamer
,
E.
Strömstedt
,
M.
Stålberg
,
J.
Sundberg
,
O.
Svensson
,
S.
Tyrberg
, and
R.
Waters
,
Surv. Geophys.
29
,
221
(
2008
).
4.
B.
Drew
,
a R.
Plummer
, and
M. N.
Sahinkaya
,
Proc. Inst. Mech. Eng. Part A: J. Power Energy
223
,
887
(
2009
).
5.
A.
Clément
,
P.
McCullen
,
A.
Falcão
,
A.
Fiorentino
,
F.
Gardner
,
K.
Hammarlund
,
G.
Lemonis
,
T.
Lewis
,
K.
Nielsen
,
S.
Petroncini
,
M.-T.
Pontes
,
P.
Schild
,
B.-O.
Sjöström
,
H. C.
Sørensen
, and
T.
Thorpe
,
Renewable Sustainable Energy Rev.
6
,
405
(
2002
).
6.
A. F. D. O.
Falcão
,
Renewable Sustainable Energy Rev.
14
,
899
(
2010
).
7.
B.
Scherber
,
M.
Grauer
, and
A.
Köllnberger
,
Proc. SPIE
8687
,
86870K
(
2013
).
8.
R.
Vertechy
,
M.
Fontana
,
G. P.
Rosati Papini
, and
M.
Bergamasco
,
Proc. SPIE
8687
,
868701
(
2013
).
9.
M.
Leijon
,
O.
Danielsson
,
M.
Eriksson
,
K.
Thorburn
,
H.
Bernhoff
,
J.
Isberg
,
J.
Sundberg
,
I.
Ivanova
,
E.
Sjöstedt
,
O.
Ågren
,
K. E.
Karlsson
, and
A.
Wolfbrandt
,
Renewable Energy
31
,
1309
(
2006
).
10.
C.
Boström
,
E.
Lejerskog
,
S.
Tyrberg
,
O.
Svensson
,
R.
Waters
,
A.
Savin
,
B.
Bolund
,
M.
Eriksson
, and
M.
Leijon
,
J. Offshore Mech. Arct. Eng.
132
,
041103
(
2010
).
11.
Y.
Hong
,
E.
Hultman
,
V.
Castellucci
,
B.
Ekergård
,
L.
Sjökvist
,
D.
Elamalayil Soman
,
R.
Krishna
,
K.
Haikonen
,
A.
Baudoin
,
L.
Lindblad
,
E.
Lejerskog
,
D.
Käller
,
M.
Rahm
,
E.
Strömstedt
,
C.
Boström
,
R.
Waters
, and
M.
Leijon
, in
Proceedings of the 10th European Wave and Tidal Conference (EWTEC)
,
Aalborg, Denmark
, 2–5 September (
2013
).
12.
M.
Eriksson
,
R.
Waters
,
O.
Svensson
,
J.
Isberg
, and
M.
Leijon
,
J. Appl. Phys.
102
,
084910
(
2007
).
13.
J.
Ben
and
C.
Gerwick
,
Construction of Marine and Offshore Structures
, 3rd ed. (
CRC Press
,
2007
), p.
840
.
14.
J. N.
Newman
,
Marine Hydrodynamics
(
MIT Press
,
1977
).
15.
H.
Gravråkmo
,
M.
Leijon
,
E.
Strömstedt
,
J.
Engström
,
S.
Tyrberg
,
A.
Savin
,
O.
Svensson
, and
R.
Waters
, in
Proceedings of Renewable Energy
,
Pacifico Yokohama
,
Yokohama, Japan
,
June 27–July 2, 2010
.
16.
R.
Waters
,
J.
Engström
,
J.
Isberg
, and
M.
Leijon
,
Renewable Energy
34
,
1600
(
2009
).
17.
S.
Coles
,
An Introduction to Statistical Modeling of Extreme Values
(
Springer
,
2001
), p.
224
.
18.
M.
Mathiesen
,
Y.
Goda
,
P. J.
Hawkes
,
E.
Mansard
,
M. J.
Martín
,
E.
Peltier
,
E. F.
Thompson
, and
G.
Van Vledder
,
J. Hydraul. Res.
32
,
803
(
1994
).
19.
F.
Mazas
and
L.
Hamm
,
Coastal Eng.
58
,
385
(
2011
).
20.
C.
Hun Kim
,
Nonlinear Waves and Offshore Structures
, 1st ed. (
World Scientific Publishing Company
,
2008
), pp.
12
53
.
21.
M. K.
Ochi
,
Soc. Nav. Archit. Mar. Eng.
86
,
47
(
1978
).
22.
J. C. Z.
Fang
and
D.
Shunsun
,
Acta Oceanol. Sin
8
(
3
),
315
(
1989
).
23.
Y.
Goda
,
Random Seas and Design of Maritime Structures
, 3rd ed. (
World Scientific Publishing Company
,
2010
), pp.
17
25
.
24.
Wamit Inc.
, WAMIT User Manual, Version 7.0 see www.wamit.com.
25.
H.
Oumeraci
and
A.
Kortenhaus
,
Coastal Eng.
22
,
159
(
1994
).
26.
P.
Klammer
,
A.
Kortenhaus
, and
H.
Oumeraci
, in
Coastal Engineering
(
ASCE
,
1996
), pp.
2534
2547
.
You do not currently have access to this content.