The magnitude of energy, which can be extracted by tidal energy converter devices, has a significant impact on the commercial viability of a project. Therefore, a quantitative characterization of the tidal current at the location of interest and subsequently a reliable prediction of the productivity of a tidal energy converter prior to installation is of high interest. This paper presents the successful deployment of a unique and novel fully symmetric tidal in-stream current energy converter HyTide 110-5.3 in Jindo, South Korea, and a methodology to predict the productivity of a single device based on simulation. The simulation combines a 2D shallow water equation model with turbine performance curves and is validated using real performance data from the prototype under real conditions. In addition, the predicted productivity is compared with actual field measurements during the operation of the Voith demonstrator using two Acoustic Doppler Current Profilers according to the IEC specifications for the performance assessment of Tidal Energy Converters, which is novel at that time. The simulation results show that the productivity of a single device can be predicted accurately and furthermore serves as a proof of concept for the symmetrical turbine layout. The 2D shallow water equation solver based on OpenFOAM® (tidalFoam) captures the rough conditions at the turbine site accurately, where the turbine is facing flood tides with a mean inclined inflow angle of 30°. In addition, the zero-equation turbulence model is shown to successfully capture the influence of a Kármán Vortex street on the turbine unit. High-resolution data of bathymetry, shorelines, and tidal elevations are used to set up the open boundaries of the unstructured mesh used in the model. The sea ground friction as an additional source term in the model is used to calibrate the simulation against Acoustic Doppler Current Profiler measurements on site. The simulation results are shown to be reliable, yielding highly accurate productivity predictions of a single tidal turbine. This is an important step towards a robust commercial evaluation of tidal energy projects prior to installation. Based on the single turbine model, simulations of three tidal current turbine farms as well as the available theoretical and technical power output of the region around Jindo during an entire moon cycle were performed. Possible impacts on average volumetric flow rate changes for neighbouring channels are presented.

1.
House of Lords, The EU's target for renewable energy: 20% by 2020 (Volume I: Report. London,
2008
).
2.
HM Government
,
The UK Renewable Energy Strategy
(
Surrey
,
2009
).
3.
BLACK & VEATCH
,
Phase II. UK Tidal Stream Energy Resource Assessment
(
The Carbon Trust
,
London
,
2005
).
4.
A. S.
Iyer
,
S. J.
Couch
,
G. P.
Harrison
, and
A.
Wallace
, “
Phasing of tidal current energy around the uk and potential contribution to electricity generation
,” in
9th European Wave and Tidal Energy Conference (EWTEC)
, edited by
A. S.
Bahaj
(
Southampton
,
UK
,
2011
), p.
10
.
5.
Marine Renewable Energy Technology and Environmental Interactions
, edited by
M. A.
Shields
and
A. I. L.
Payne
(
Springer
,
2014
).
6.
J.
Hardisty
,
The Analysis of Tidal Stream Power
(
John Wiley & Sons, Inc.
,
New York, NY
,
2009
), ISBN: 978-0-470-72451-4.
7.
International Energy Agency
, “
Implementing agreement on ocean energy systems
,”
Annual Report
, IES-OES,
2007
.
8.
M. A.
Shields
,
D. K.
Woolf
,
E. P.
Grist
,
S. A.
Kerr
,
A.
Jackson
,
R. E.
Harris
,
M. C.
Bell
,
R.
Beharie
,
A.
Want
,
E.
Osalusi
,
S. W.
Gibb
, and
J.
Side
, “
Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment
,”
Ocean Coastal Manage.
54
,
2
9
(
2011
).
9.
C.
Frid
,
E.
Andonegi
,
J.
Depestele
,
A.
Judd
,
D.
Rihan
,
S. I.
Rogers
, and
E.
Kenchington
, “
The environmental interactions of tidal and wave energy generation devices
,”
Environ. Impact Assess. Rev.
32
,
133
139
(
2012
).
10.
A.
Ruopp
,
P.
Daus
,
A.
Ruprecht
, and
S.
Riedelbauch
, “
A two-dimensional finite volume shallow water model for tidal current simulations using OpenFOAM®—Numerical validation and high-resolution ocean modelling case
,” in
10th European Wave and Tidal Energy Conference (EWTEC)
(
Aalborg
,
Denmark
,
2013
), p.
10
.
11.
Shallow-water-equation as a valid simplification of the Reynolds-averaged Navier-Stokes (RANS).
12.
S.-R.
Sabbagh-Yazdi
and
M.
Zounemat-Kermani
, “
Numerical solution of tidal currents at marine waterways using wet and dry technique on Galerkin finite volume algorithm
,”
Comput. Fluids
38
,
1876
1886
(
2009
).
13.
R.
Msadek
, “
Hydrodynamic tidal model of Cook Strait
,” Master's thesis (
Ecole MATMECA, National Institute of Water and Atmospheric Research
,
2005
).
14.
J.
Lawrence
,
H.
Kofoed-Hansen
, and
C.
Chevalier
, “
High resolution metocean modeling
,” in
Proceedings of the 8th European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden, 2009
(The European Marine Energy Centre,
2009
).
15.
M.
Leclerc
,
J.-F.
Bellemare
,
G.
Dumas
, and
G.
Dhatt
, “
A finite element model of estuarian and river flows with moving boundaries
,”
Adv. Water Resour.
13
,
158
168
(
1990
).
16.
L.
Cea
,
J. R.
French
, and
M. E.
Vázquez-Cendón
, “
Numerical modelling of tidal flows in complex estuaries including turbulence: An unstructured finite volume solver and experimental validation
,”
Int. J. Numer. Methods Eng.
67
,
1909
1932
(
2006
).
17.
I.
Nikolos
and
A.
Delis
, “
An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography
,”
Comput. Methods Appl. Mech. Eng.
198
,
3723
3750
(
2009
).
18.
S.
Couch
and
I.
Bryden
, “
The impact of energy extraction on tidal flow development
,” in
3rd IMarEST International Conference on Marine Renewable Energy
(Centre for Research in Energy and the Environment, The Robert Gordon University, Scotland,
2004
).
19.
I. G.
Bryden
,
S. J.
Couch
,
A.
Owen
, and
G.
Melville
, “
Tidal current resource assessment
,”
Proc. Inst. Mech. Eng., Part A
221
,
125
135
(
2007
).
20.
I. G.
Bryden
and
S. J.
Couch
, “
ME1—Marine energy extraction: Tidal resource analysis
,”
Renewable Energy
31
,
133
139
(
2006
).
21.
J.
MacEnri
,
M.
Reed
, and
T.
Thiringer
, “
Influence of tidal parameters on seagen flicker performance
,” in
9th European Wave and Tidal Energy Conference (EWTEC)
(
2011
), p.
7
.
22.
J.
McNaughton
,
S.
Rolfo
,
D.
Apsley
,
T.
Stallard
, and
P.
Stansby
, “
CFD power and load prediction on a 1 MW tidal stream turbine with typical velocity profiles from the EMEC test site
,” in
10th European Wave and Tidal Energy Conference (EWTEC)
(
Aalborg, Denmark
,
2013
), p.
7
.
23.
International Electrotechnical Commission
, “
IEC 62600-200 TS: Power performance assessment of electricity producing tidal energy converters
,”
Technical Report No. IEC TS 62600-200:2013
, ed. 1, IEC,
2013
.
24.
T.
Maeda
,
Y.
Kamada
,
J.
Suzuki
, and
H.
Fujioka
, “
Rotor blade sectional performance under yawed inflow conditions
,”
J. Sol. Energy Eng.
130
,
031018
(
2008
).
25.
Acoustic Doppler Current Profiler referring to devices sold by the manufacturer RDI®.
26.
Y.
Lu
and
R. G.
Lueck
, “
Using a broadband ADCP in a tidal channel. Part II: Turbulence
,”
J. Atmos. Oceanic Technol.
16
,
1568
1579
(
1999
).
27.
D. R.
Sutherland
,
B. G.
Sellar
,
S.
Harding
, and
I.
Bryden
, “
Initial flow characterisation utilising turbine and seabed installed acoustic sensor arrays
,” in
10th European Wave and Tidal Energy Conference (EWTEC)
(
Aalborg
,
Denmark
,
2013
), Vol.
10
, p.
8
.
28.
A. J. F.
Hoitink
,
H. C.
Peters
, and
M.
Schroevers
, “
Field verification of adcp surface gravity wave elevation spectra
,”
J. Atmos. Oceanic Technol.
24
,
912
922
(
2007
).
29.
G.
Sutherland
,
M.
Foreman
, and
C.
Garrett
, “
Tidal current energy assessment for Johnstone Strait, Vancouver Island
,”
Proc. Inst. Mech. Eng., Part A
221
,
147
157
(
2007
).
30.
A. P.
Pérez-Ortiz
,
J.
Pescatore
, and
I.
Bryden
, “
A systematic approach to undertake tidal energy resource assessment with Telemac-2D
,” in
10th European Wave and Tidal Energy Conference (EWTEC)
(
Aalborg
,
Denmark
,
2013
), p.
9
.
31.
J. M.
McMillian
,
A. E.
Hay
,
R. H.
Karsten
, and
G.
Trowse
, “
Comprehensive tidal energy resource assessment in the lower bay of Fundy, Canada
,” in
10th European Wave and Tidal Energy Conference (EWTEC)
(
Aalborg
,
Denmark
,
2013
), p.
10
.
32.
H.-E.
Lee
,
L.
Chanjoo
,
K.
Youg-Jeon
,
K.
Ji-Sung
, and
W.
Kim
, “
Power law exponents for vertical velocity distributions in natural rivers
,”
Engineering
5
,
933
942
(
2013
).
33.
M.
Sahu
and
R. M. R.
Jha
, “
Critical appraisal of various techniques used for velocity distribution in open channel flow
,” in
Proceedings of the ninth International Conference on Hydro-Science and Engineering
(
IAHR
,
2010
).
34.
C.
Garrett
and
P.
Cummins
, “
The power potential of tidal currents in channels
,”
Proc. R. Soc. A
461
,
2563
2572
(
2005
).
35.
A.
Betz
, “
Das maximum der theoretisch möglichen ausnutzung des windes durch windrotoren (the maximum of the theoretical possible exploitation of the wind by wind motors)
,”
Z. Gesamte Turbinenwesen
26
,
307
309
(
1920
).
36.
F. W.
Lanchester
, “
A contribution to the theory of propulsion and the screw propeller
,”
Trans. R. Inst. Nav. Archit.
57
,
98
116
(
1915
).
37.
Ideal in terms of any flow direction can be harvested at optimal inflow conditions.
38.
D.
Hasegawa
,
J.
Sheng
,
D.
Greenberg
, and
K.
Thompson
, “
Far-field effects of tidal energy extraction in the minas passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model
,”
Ocean Dyn.
61
,
1845
1868
(
2011
).
39.
See http://www.hydroworld.com/articles/2007/10/tidal-power-venture-signs-korean-engineering-firm.html for “Tidal power venture signs Korean engineering firm” (last accessed October 10,
2015
).
40.
See http://www.renetec.com/kr/index.html for “RENETEC renewable energy technologies” (last accessed October 9,
2015
).
41.
G. D.
Egbert
,
A. F.
Bennett
, and
M. G. G.
Foreman
, “
Topex/poseidon tides estimated using a global inverse model
,”
J. Geophys. Res.: Oceans
99
,
24821
24852
(
1994
).
42.
G. D.
Egbert
and
S. Y.
Erofeeva
, “
Efficient inverse modeling of barotropic ocean tides
,”
J. Atmos. Oceanic Technol.
19
,
183
204
(
2002
).
43.
G. D.
Egbert
and
S. Y.
Erofeeva
, The OSU TOPEX/poseidon global inverse solution TPXO,
2013
.
44.
B.
Gschaider
, see http://openfoamwiki.net/index.php/Contrib/swak4Foam\#Downloading for Contrib/swak4foam,
2012
.
45.
Z.
Kowalik
and
T. S.
Murty
, in
Numerical Modeling of Ocean Dynamics
, edited by
P. L.-F.
Liu
, Advanced Series on Ocean Engineering, Vol.
5
(
World Scientific Publishing Co. Pte. Ltd
,
Singapore
,
1993
).
46.
V.
Venugopal
,
T.
Davey
,
F.
Girard
,
H.
Smith
,
G.
Smith
,
L.
Cavaleri
,
L.
Bertotti
, and
J.
Lawrence
, “
Equimar—Application of numerical models
,”
Technical Report No. D2.3
, University of Edinburgh, UK; Actimar, France; University of Exeter, UK; CNR-ISMAR, Italy; EMEC, UK,
2010
.
47.
Y.
Jia
and
S. S. Y.
Wang
, “
CCHE2D:two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed
,”
Technical Report No. NCCHE-TR-2001-1
, School of Engineering, The University of Mississippi,
2001
.
48.
H.
Glauert
, “
The analysis of experimental results in the windmill break and vortex ring states of and airscrew
,”
Technical Report No. R & M 1026
, ARC,
1926
.
49.
H.
Glauert
, “
Airplane propellers
,” in
Aerodynamic Theory
(
Springer
,
Berlin Heidelberg
,
1935
), pp.
169
360
.
50.
W. Z.
Shen
,
R.
Mikkelsen
,
J. N.
Sørensen
, and
C.
Bak
, “
Tip loss corrections for wind turbine computations
,”
Wind Energy
8
,
457
475
(
2005
).
51.
R.
Wilson
and
P.
Lissaman
,
Applied Aerodynamics of Wind Power Machines
(
Oregon State University
,
Corvallis, OR
,
1974
).
52.
M.
Drela
, “
Xfoil: An analysis and design system for low Reynolds number airfoils
,” in
Low Reynolds Number Aerodynamics
, Lecture Notes in Engineering Vol.
54
, edited by
T.
Mueller
(
Springer
,
Berlin, Heidelberg
,
1989
), pp.
1
12
.
53.
L. A.
Viterna
and
R. D.
Corrigan
, “
Fixed pitch rotor performance of large horizontal axis wind turbines
,” in
Proceedings of a Workshop of Large Hozizontal-Axis Wind Turbines
(
Wind Energy Technology Division, US Department of Energy
,
1982
), Vol.
1
, pp.
69
85
.
54.
H.
Snel
,
R.
Houwink
, and
J.
Bosschers
, “
Sectional prediction of lift coefficients on rotating wind turbine blade in stall
,”
Technical Report No. ECN-C-93-052
, ECN Renewable Energy,
1994
.
55.
L.
Myers
and
A.
Bahaj
, “
Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators
,”
Ocean Eng.
37
,
218
227
(
2010
).
56.
L. E.
Myers
,
B.
Keogh
, and
A. S.
Bahaj
, “
Layout optimisation of 1st-generation tidal energy arrays
,” in
9th European Wave and Tidal Energy Conference (EWTEC)
(
Southampton
,
UK
,
2011
), p.
6
.
57.
G.
Bai
,
J.
Li
,
P.
Fan
, and
G.
Li
, “
Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines
,”
Renewable Energy
53
,
180
186
(
2013
).
You do not currently have access to this content.