The performance of several Wave Energy Converter devices is evaluated at three sites located on the west side of Sicily. To select the most energetic site, the average potential wave energy along the coasts of Sicily is evaluated by adopting a third-generation spectral wave propagation model using as boundary conditions the European Centre for Medium-Range Weather Forecasts operational archive wave and wind data. The most energetic sites are on the western side of Sicily. In the three hotspots identified, the mean energy flux is within the range of 5.33–7.52 kW/m. The analysis shows that all considered devices have a low capacity factor in their original configurations (2.19%–5.12%). The main causes of the poor results in terms of energy production are related to the fact that such devices are optimized for high-energy waves. A resizing of the devices on the basis of the local wave climate showed that a capacity factor that exceeds 30% could be obtained.

1.
A.
Clément
,
P.
McCullen
,
A. F.
Ao
,
A.
Fiorentino
,
F.
Gardner
,
K.
Hammarlund
,
G.
Lemonis
,
T.
Lewis
,
K.
Nielsen
,
S.
Petroncini
,
M.-T.
Pontes
,
P.
Schild
,
B.-O.
Sjöström
,
H. C.
Sørensen
, and
T.
Thorpe
, “
Wave energy in Europe: Current status and perspectives
,”
Renewable Sustainable Energy Rev.
6
,
405
431
(
2002
).
2.
A. F. de O.
Falcão
, “
Wave energy utilization: A review of the technologies
,”
Renewable Sustainable Energy Rev.
14
,
899
918
(
2010
).
3.
A.
Azzellino
,
D.
Conley
,
D.
Vicinanza
, and
J.
Kofoed
, “
Marine renewable energies: Perspectives and implications for marine ecosystems
,”
Sci. World J.
2013
,
547563
.
4.
A.
Azzellino
,
V.
Ferrante
,
J.
Kofoed
,
C.
Lanfredi
, and
D.
Vicinanza
, “
Optimal siting of offshore wind-power combined with wave energy through a marine spatial planning approach
,”
Int. J. Mar. Energy
3–4
,
e11
e25
(
2013
).
5.
R. E.
Harris
,
L.
Johanning
, and
J.
Wolfram
, “
Mooring systems for wave energy converters: A review of design issues and choices
,” in
Proceedings of the 3rd International Conference on Marine Renewable Energy
,
Blyth, UK
,
6–9 July 2004
.
6.
D.
Vicinanza
,
F.
Ciardulli
,
M.
Buccino
,
M.
Calabrese
, and
J.
Koefed
, “
Wave loadings acting on an innovative breakwater for energy production
,”
J. Coastal Res.
SI64
,
608
612
(
2011
).
7.
M.
Buccino
,
D.
Banfi
,
D.
Vicinanza
,
M.
Calabrese
,
G.
Del Giudice
, and
A.
Carravetta
, “
Non breaking wave forces at the front face of seawave slotcone generators
,”
Energies
5
,
4779
4803
(
2012
).
8.
D.
Vicinanza
,
P.
Contestabile
,
J. Q. H.
Nørgaard
, and
T. L.
Andersen
, “
Innovative rubble mound breakwaters for overtopping wave energy conversion
,”
Coastal Eng.
88
,
154
170
(
2014
).
9.
D.
Vicinanza
,
P.
Contestabile
, and
V.
Ferrante
, “
Wave energy potential in the north-west of Sardinia (Italy)
,”
Renewable Energy
50
,
506
521
(
2013
).
10.
D.
Vicinanza
,
L.
Cappietti
,
V.
Ferrante
, and
P.
Contestabile
, “
Estimation of the wave energy in the Italian offshore
,”
J. Coastal Res.
SI64
,
613
617
(
2011
).
11.
N.
Booij
,
R.
Ris
, and
L.
Holthuijsen
, “
A third-generation wave model for coastal regions 1. Model description and validation
,”
J. Geophys. Res. C: Oceans
104
,
7649
7666
(
1999
).
12.
GEBCO, “
General bathymetric chart of the oceans (GEBCO). The gebco08 grid
,” General Bathymetric Chart of the Oceans,
1999
.
13.
K.
Hasselmann
,
S.
Hasselmann
,
E.
Bauer
,
P.
Janssen
,
G.
Komen
,
L.
Bertotti
,
P.
Lionello
,
A.
Guillaume
,
V.
Cardone
,
J.
Greenwood
,
M.
Reistad
,
L.
Zambresky
, and
J.
Ewing
, “
The WAM model—A third generation ocean wave prediction model
,”
J. Phys. Oceanogr.
18
,
1775
1810
(
1988
).
14.
C.
Willmott
, “
Some comments on the evaluation of model performance
,”
Bull.—Am. Meteorol. Soc.
63
,
1309
1313
(
1982
).
15.
L.
Cavaleri
, “
Wave modeling-missing the peaks
,”
J. Phys. Oceanogr.
39
,
2757
2778
(
2009
).
16.
P.
Queffeulou
, “
Long-term validation of wave height measurements from altimeters
,”
Mar. Geod.
27
,
495
510
(
2004
).
17.
C.
Iuppa
,
L.
Cavallaro
,
D.
Vicinanza
, and
E.
Foti
, “
Investigation of suitable sites for wave energy converters around Sicily (Italy)
,”
Ocean Sci.
11
,
543
557
(
2015
).
18.
L.
Liberti
,
A.
Carillo
, and
G.
Sannino
, “
Wave energy resource assessment in the Mediterranean, the Italian perspective
,”
Renewable Energy
50
,
938
949
(
2013
).
19.
ABPmer
, “
Atlas of uk marine renewable energy resources
,”
Technical Report No. R1432
, Marine Environmental Research for UK Department of Trade and Industry,
2008
.
20.
M.
Monteforte
,
C. L.
Re
, and
G.
Ferreri
, “
Wave energy assessment in Sicily (Italy)
,”
Renewable Energy
78
,
276
287
(
2015
).
21.
I.
López
,
J.
Andreu
,
S.
Ceballos
,
I. M.
de Alegría
, and
I.
Kortabarria
, “
Review of wave energy technologies and the necessary power-equipment
,”
Renewable Sustainable Energy Rev.
27
,
413
434
(
2013
).
22.
A.
Weinstein
,
G.
Fredrikson
,
M. J.
Parks
, and
K.
Nielsen
, “
Aquabuoy-the offshore wave energy converter numerical modeling and optimization
,” in
Oceans'04. MTTS/IEEE Techno-Ocean'04
(
IEEE
,
2004
), Vol.
4
, pp.
1854
1859
.
23.
D.
Silva
,
E.
Rusu
, and
C. G.
Soares
, “
Evaluation of various technologies for wave energy conversion in the Portuguese nearshore
,”
Energies
6
,
1344
(
2013
).
24.
S.
Bozzi
,
R.
Archetti
, and
G.
Passoni
, “
Wave electricity production in Italian offshore: A preliminary investigation
,”
Renewable Energy
62
,
407
416
(
2014
).
25.
A.
Babarit
,
J.
Hals
,
M.
Muliawan
,
A.
Kurniawan
,
T.
Moan
, and
J.
Krokstad
, “
Numerical benchmarking study of a selection of wave energy converters
,”
Renewable Energy
41
,
44
63
(
2012
).
26.
L.
Rusu
and
F.
Onea
, “
Assessment of the performances of various wave energy converters along the European continental coasts
,”
Energy
82
,
889
904
(
2015
).
You do not currently have access to this content.