The energy use of biomass in rural areas is starting to interest the farmers in Ecuador. Its use is recognized as environmentally friendly, but knowledge about the raw materials to be used as bioenergy remains meager. The objective of this research was to characterize five species located in the province of Guayas: avocado (Persea americana L.), carob (Prosopis spp.), mango (Mangifera indica L.), neem (Azadirachta indica L.), and bananas (Musa acuminata L.). The elemental composition and higher heating value were analyzed following harmonized standards. These species did not significantly differ in CHN composition, being about 33.012% C, 6.232% H, 0.610% N, and their higher heating value 14.322 MJ kg−1. However, significant differences were found with respect to Cl and S: banana wood had the highest Cl and S content 1.162% and 0.134%, respectively, while avocado had the lowest Cl and S content, 0.032% and 0.063%, respectively. Fifteen mathematical models were formulated to predict the higher heating values from elemental analysis. Three of these were selected to be used under better conditions based primarily on C with an R2 greater than 0.829 and mean percentage absolute error less than 3.38%.

1.
A. J.
Callejón-Ferre
,
J.
Carreño-Sánchez
,
F. J.
Suárez-Medina
,
J.
Pérez-Alonso
, and
B.
Velázquez-Martí
, “
Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almeria (Spain)
,”
Fuel
116
,
377
387
(
2014
).
2.
A. H.
Demirbas
and
I.
Demirbas
, “
Importance of rural bioenergy for developing countries
,”
Energy Convers. Manage.
48
,
2386
2398
(
2007
).
3.
F.
Manzano-Agugliaro
,
A.
Alcayde
,
F. G.
Montoya
,
A.
Zapata-Sierra
, and
C.
Gil
, “
Scientific production of renewable energies world wide: An overview
,”
Renewable Sustainable Energy Rev.
18
,
134
143
(
2013
).
4.
See http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062 for Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.
2009
. Official Journal of the European Union. DO L 140 5.6.2009,
16
62
.
5.
M. F.
Demirbas
, “
Biorefineries for biofuel upgrading: A critical review
,”
Appl. Energy
86
,
S151
S61
(
2009
).
6.
L.
Zhang
,
C.
Xu
, and
P.
Champagne
, “
Overview of recent advances in thermo-chemical conversion of biomass
,”
Energy Convers. Manage.
51
,
969
982
(
2010
).
7.
C. Y.
Yin
, “
Prediction of higher heating values of biomass from proximate and ultimate analyses
,”
Fuel
90
,
1128
1132
(
2011
).
8.
J. M.
Vargas-Moreno
,
A. J.
Callejón-Ferre
,
J.
Pérez-Alonso
, and
B. A.
Velázquez-Martí
, “
Review of the mathematical models for predicting the heating value of biomass materials
,”
Renewable Sustainable Energy Rev.
16
,
3065
3083
(
2012
).
9.
C.
Telmo
,
J.
Lousada
, and
N.
Moreira
, “
Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood
,”
Bioresour. Technol.
101
,
3808
3815
(
2010
).
10.
I.
Obernberger
,
T.
Brunner
, and
G.
Bärnthaler
, “
Chemical properties of solid biofuels-significance and impact
,”
Biomass Bioenergy
30
,
973
982
(
2006
).
11.
A. A.
Khan
,
W. D.
Jonga
,
P. J.
Jansens
, and
H.
Spliethoff
, “
Biomass combustion in fluidized bed boilers: potential problems and remedies
,”
Fuel Process Technol.
90
,
21
50
(
2009
).
12.
S. V.
Vassilev
,
D.
Baxter
,
L. K.
Andersen
, and
C. G.
Vassileva
, “
An overview of the chemical composition of biomass
,”
Fuel
89
,
913
933
(
2010
).
13.
B.
Velázquez-Martí
,
J.
Estornell
,
I.
López-Cortés
, and
J.
Martí-Gavila
, “
Calculation of biomass volume of citrus trees from an adapted dendrometry
,”
Biosyst. Eng.
112
,
285
292
(
2012
).
14.
ASTM E870-82(2006)
,
Standard Test Methods for Analysis of Wood Fuels
(
ASTM International
,
West Conshohocken, USA
,
2006
).
15.
UNE-CEN/TS 15104:2008
EX,
Biocombustibles sólidos. Determinación del contenido total de carbono, hidrógeno y nitrógeno. Métodosinstrumentales
(
AENOR
,
Madrid, Spain
,
2008
).
16.
ASTM E777–08
,
Standard Test Method for Carbon and Hydrogen in the Analysis Sample of Refuse Derived Fuel
(
ASTM International
,
West Conshohocken, USA
,
2008
).
17.
ASTM E778–08
,
Standard Test Methods for Nitrogen in the Analysis Sample of Refuse Derived Fuel
(
ASTM International
,
West Conshohocken, USA
,
2008
).
18.
ASTM E775-87(2008)e1
,
Standard Test Methods for Total Sulfur in the Analysis Sample of Refuse Derived Fuel
(
ASTM International
,
West Conshohocken, USA
,
2008
).
19.
ASTM E776-87
,
Standard Test Method for Forms of Chlorine in Refuse Derived Fuel
(
ASTM International
,
West Conshohocken, USA
,
2009
).
20.
UNE 164001:2005 EX
,
Biocombustibles sólidos. Método para la determinación del HHV
(
AENOR
,
Madrid, Spain
,
2005
).
21.
UNE 164001:2005 EX ERRATUM:2008
,
Biocombustibles sólidos. Método para la determinación del HHV
(
AENOR
,
Madrid, Spain
,
2008
).
22.
ASTM D5865-10ae1
,
Standard Test Method for Gross Calorific Value of Coal and Coke
(
ASTM International
,
West Conshohocken, USA
,
2010
).
23.
ASTM E711-87(2004)
,
Standard Test Method for Gross Calorific Value of Refuse Derived Fuel by the Bomb Calorimeter
(
ASTM International
,
West Conshohocken, USA
,
2004
).
24.
UNE-CEN/TS 14780:2008 EX
,
Biocombustibles sólidos. Métodos para la preparación de muestras
(
AENOR
,
Madrid, Spain
,
2008
).
25.
A.
Bauen
,
G.
Berndesm
,
M.
Junginger
,
M.
Londo
, and
F.
Vuille
, See http://www.ieabioenergy.com/wp-content/uploads/2013/10/MAIN-REPORTBioenergy-a-sustainable-and-reliable-energy-source.-A-review-of-status-and-prospects.pdf for Bioenergy—A sustainable and reliable and energy source: A review of status and prospects,
2009
.
26.
WEC (World Energy Council)
, See http://www.worldenergy.org/wp-content/uploads/2012/09/ser_2010_report_1.pdf for Survey of energy resources, World energy council,
2010
27.
C.
Okello
,
S.
Pindozzi
,
S.
Faugno
, and
L.
Boccia
, “
Bioenergy potential of agricultural and forest residues in Uganda
,”
Biomass Bioenerg.
56
,
515
525
(
2013
).
28.
S. S.
Yu
,
C. Y.
Wu
,
S. Z.
Wang
, and
M. J.
Hu
, “
The actualities and prospects of ultrasound-based pattern recognition in crop feature extraction
,” in
International Conference on Mechanical, Industrial, and Manufacturing Engineering
, edited by
M.
Ma
, Book series: Lecture Notes in Information Technology (
Nanjing Research Institute for Agricultural Mechanization
,
2011
), pp.
94
98
.
29.
M. H.
Yu
,
J. H.
Li
,
S.
Chang
,
R.
Du
,
S. Z.
Li
,
L.
Zhang
,
G. F.
Fan
,
Z. P.
Yan
,
T.
Cui
,
G. T.
Cong
, and
G.
Zhao
, “
Optimization of ethanol production from NaOH-pretreated solid state fermented sweet sorghum bagasse
,”
Energies
7
,
4054
4067
(
2014
).
30.
D.
Sarris
,
L.
Matsakas
,
G.
Aggelis
,
A. A.
Koutinas
, and
S.
Papanikolaou
, “
Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions
,”
Ind. Crops. Prod.
56
,
83
93
(
2014
).
31.
E. P.
Dagnino
,
E. R.
Chamorro
,
S. D.
Romano
,
F. E.
Felissia
, and
M. C.
Area
, “
Optimization of the pretreatment of prosopis nigra sawdust for the production of fermentable sugars
,”
Bioresources
8
,
499
514
(
2013
).
32.
J. M.
Pardao
,
I.
Diaz
,
S.
Raposo
,
T.
Manso
, and
M. E.
Lima-Costa
, “
Sustainable bioethanol production using agro-industrial by-products
,” in
New Aspects of Energy, Environment, Ecosystems and Sustainable Development
(
2008
), pp. PT1.
149
153
.
33.
R.
Sánchez-Orozco
,
P.
Balderas-Hernández
,
G.
Roa-Morales
,
F.
Ureña-Nuñez
,
J.
Orozco-Villafuerte
,
V.
Lugo-Lugo
,
N.
Flores-Ramírez
,
C. E.
Barrera-Díaz
, and
P.
Cajero-Vázquez
, “
Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production
,”
Bioresources
9
,
1873
1885
(
2014
).
34.
S. P.
Das
,
R.
Ravindran
,
D.
Deka
,
M.
Jawed
,
D.
Das
, and
A.
Goyal
, “
Bioethanol production from leafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes
,”
Prep. Biochem. Biotechnol.
43
,
717
734
(
2013
).
35.
I. P.
Hernandez
,
J. A.
Perez-Pimienta
,
S.
Messina
, and
C. E.
Duran
, “
Dilute sulfuric acid hydrolysis of tropical region biomass
,”
J. Renewable Sustainable Energy
4
,
021201
(
2012
).
36.
J.
Gao
,
L.
Chen
,
K.
Yuan
,
H. M.
Huang
, and
Z. C.
Yan
, “
Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass
,”
Bioresource Technol.
150
,
352
358
(
2013
).
37.
A.
Salam
,
M.
Hasan
,
B. A.
Begum
,
M.
Begum
, and
S. K.
Biswas
, “
Chemical characterization of biomass burning deposits from cooking stoves in Bangladesh
,”
Biomass Bioenerg.
52
,
122
130
(
2013
).
38.
V.
Panwar
,
B.
Prasad
, and
K. L.
Wasewar
, “
Biomass residue briquetting and characterization
,”
J. Energy Eng.-ASCE
137
,
108
114
(
2011
).
39.
J. F.
Melo
,
A. G.
Seabra
,
S. A.
Souza
,
R. C.
Souza
, and
R. A.
Figueiredo
, “
Replacement of corn meal by mango in the dietary in performance of fingerlings of Nile-tilapia
,”
Arq. Bras. Med. Vet. Zootec.
64
,
177
182
(
2012
).
40.
R. M.
Kayode
,
A.
Sani
, and
F. L.
Kolawole
, “
Physico-chemical analysis and nutrient retention of mixed-culture fungal fermented mango (Mangifera indica) kernel cake in cockerels
,”
Afr. J. Biothecnol.
9
,
5887
5892
(
2010
).
41.
S.
Sajith
,
S.
Sreedevi
,
P.
Priji
,
K. N.
Unni
, and
S.
Benjamin
, “
Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1
,”
Ann. Microbiol.
64
,
763
771
(
2014
).
42.
D.
Ciechanska
,
J.
Wietecha
,
M.
Kucharska
,
K.
Wrzegniewska-Tosik
, and
E.
Kopania
, “
Biomass as a source of functional polymeric materials
,”
Polimery-W
59
,
383
392
(
2014
).
43.
I.
Kamdem
,
S.
Hiligsmann
,
C.
Vanderghem
,
I.
Bilik
,
M.
Paquot
, and
P.
Thonart
, “
Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants
,”
World J. Microbiol. Biotechnol.
29
,
2259
2270
(
2013
).
44.
E. R.
Fernandes
,
C.
Marangoni
,
O.
Souza
, and
N.
Sellin
, “
Thermochemical characterization of banana leaves as a potential energy source
,”
Energ Convers. Manage.
75
,
603
608
(
2013
).
45.
V.
Volli
and
R. K.
Singh
, “
Pyrolysis kinetics of de-oiled cakes by thermogravimetric analysis
,”
J. Renewable Sustainable Energy
5
,
033130
(
2013
).
46.
M. H.
Ali
,
M.
Mashud
,
M. R.
Rubel
, and
R. H.
Ahmad
, “
Biodiesel from Neem oil as an alternative fuel for diesel engine
,” in
5th BSME International Conference on Thermal Engineering
, edited by
A. K. M. S.
Islam
,
R.
Amin
, and
M.
Ali
(
2013
), Vol.
56
, pp.
625
630
.
47.
N. K.
Nayan
,
S.
Kumar
, and
R. K.
Singh
, “
Production of the liquid fuel by thermal pyrolysis of neem seed
,”
Fuel
103
,
437
443
(
2013
).
48.
N. R.
Murovhi
,
S. A.
Materechera
, and
S. D.
Mulugeta
, “
Seasonal changes in litter fall and its quality from three sub-tropical fruit tree species at Nelspruit, South Africa
,”
Agroforestry Syst.
86
,
61
71
(
2012
).
49.
A.
Terrab
and
F. J.
Heredia
, “
Characterisation of avocado (Pleirsea americana Mill) honeys by their physicochemical characteristics
,”
J. Sci. Food Agric.
84
,
1801
1805
(
2004
).
50.
L. S.
Chua
,
N. L.
Abdul-Rahaman
,
M. R.
Sarmidi
, and
R. I.
Aziz
, “
Multi-elemental composition and physical properties of honey samples from Malaysia
,”
Food Chem.
135
,
880
887
(
2012
).
51.
E. D.
Mooz
,
N. M.
Gaino
,
M. Y.
Shimano
,
R. D.
Amancio
, and
M. H.
Spoto
, “
Physical and chemical characterization of the pulp of different varieties of avocado targeting oil extraction potential
,”
Cienc. Technol. Aliment.
32
,
274
280
(
2012
).
52.
P. F.
Builders
,
A.
Nnurum
,
C. C.
Mbah
,
A. A.
Attama
, and
R.
Manek
, “
The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae)
,”
Starch-Starke
62
,
309
320
(
2010
).
53.
R. L.
Liu
,
Y.
Liu
,
X. Y.
Zhou
,
Z. Q.
Zhang
,
J.
Zhang
, and
F. Q.
Dang
, “
Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue
,”
Bioresour. Technol.
154
,
138
147
(
2014
).
54.
A.
Datta
and
T. K.
Adhya
, “
Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy
,”
Atmos. Environ.
92
,
533
545
(
2014
).
55.
M.
Tejada
,
C.
Benítez
,
I.
Gómez
, and
J.
Parrado
, “
Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community
,”
Appl. Soil Ecol.
49
,
11
17
(
2011
).
56.
H.
Aka
and
C.
Darici
, “
Carbon and nitrogen mineralization in carob soils with Kermes oak and Aleppo pine leaf litter
,”
Eur. J. Soil Biol.
41
,
31
38
(
2005
).
57.
M.
Santa-Maria
,
A. A.
Ruiz-Colorado
,
G.
Cruz
, and
T.
Jeoh
, “
Assessing the feasibility of biofuel production from lignocellulosic banana waste in rural agricultural communities in Peru and Colombia
,”
Bioenergy Res.
6
,
1000
1011
(
2013
).
58.
B.
Velázquez-Martí
,
M.
Sajdak
,
I.
López-Cortés
, and
A. J.
Callejón-Ferre
, “
Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas
,”
Renewable Energy
62
,
478
483
(
2014
).
59.
J. D.
Jobson
,
Applied Multivariate Data Analysis: Volume 1: Regression and Experimental Design
(
Springer Verlag
,
New York
,
1999
).
60.
C.
Sheng
and
J. L.
Azevedo
, “
Estimating the higher heating value of biomass fuels frombasic analysis data
,”
Biomass Bioenergy
28
,
499
507
(
2005
).
61.
M.
Erol
,
H.
Haykiri-Acma
, and
S.
Kücükbayrak
, “
Calorific value estimation of biomass from their proximate analysis data
,”
Renewable Energy
35
,
170
173
(
2010
).
62.
G.
Arin
and
A.
Demirbas
, “
Mathematical modeling the relations of pyrolytic products from lignocellulosic materials
,”
Energy Source
26
,
1023
1032
(
2004
).
63.
G.
Tao
,
T. A.
Lestander
,
P.
Geladi
, and
S.
Xiong
, “
Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties
,”
Renewable Sustainable Energy Rev.
16
,
3481
3506
(
2012
).
64.
B. M.
Jenkins
and
J. M.
Ebeling
, “
Correlations of physical and chemical properties of terrestrial biomass with conversion
,” in
Symposium Energy from Biomass and Waste IX IGT
(
1985
), p.
371
.
You do not currently have access to this content.