In the current context of environmental degradation and depletion of fossil fuels, marine energy has emerged as an alternative to traditional energy resources. However, being in an initial step of development, extracting energy from the ocean is often regarded as difficult and uneconomical. The existing models for assessing marine energy costs are often oversimplified, leading to uncertainties that may hold investors back and slow down the market penetration of this renewable. Therefore, an accurate prediction of marine energy costs is fundamental to drawing conclusions about its competitiveness. Among the different possibilities of marine energy, this paper focuses on the economic analysis of tidal, wave, and offshore wind energy. The individual costs involved in the construction of these offshore energy parks and operation and maintenance tasks during their lifetime are determined. With this information, the levelized cost (€/MW h) is calculated for offshore wind, wave and tidal energy (€165/MW h, €225/MW h and €190/MW h, respectively). It is found that these renewables have a higher energy cost than traditional energy sources; however, considering factors such as the learning rate or externalities enhances their competitiveness. In the second part of this paper, combined energy systems, such as hybrid converters, are presented as a future solution to boost the development of marine energies. The synergies between these renewables are outlined, as well as the cost savings that can be achieved through diversified energy systems.

1.
Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance).
2.
P.
Heptonsall
,
R.
Gross
,
P.
Greenarcre
, and
T.
Cockerill
, “
The cost of offshore wind: Understanding the past and projecting the future
,”
Energy Policy
41
,
815
821
(
2012
).
3.
V.
Ramos
and
G.
Iglesias
, “
Performance assessment of tidal stream turbines: A parametric approach
,”
Energy Convers. Manage.
69
(
0
),
49
57
(
2013
).
4.
D.
Vicinanza
,
P.
Contestabile
, and
V.
Ferrante
, “
Wave energy potential in the north-west of Sardinia (Italy)
,”
Renewable Energy
50
(
0
),
506
521
(
2013
).
5.
I. G.
Bryden
,
Proceedings of the ICE - Maritime Engineering
,
159
(
2
),
55
65
(
2006
).
6.
H. C. M.
Smith
,
D.
Haverson
, and
G. H.
Smith
, “
A wave energy resource assessment case study: Review, analysis and lessons learnt
,”
Renewable Energy
60
(
0
),
510
521
(
2013
).
7.
F.
O'Rourke
,
F.
Boyle
, and
A.
Reynolds
, “
Tidal current energy resource assessment in Ireland: Current status and future update
,”
Renewable Sustainable Energy Rev.
14
(
9
),
3206
3212
(
2010
).
8.
M.
Castaño
, in
Sistema de monitorización y supervisión de una boya para generación de energía undimotriz
, edited by
Cataluña
UPd
(
Universidad Politécnica de Cataluña
,
Spain
,
2011
).
9.
H.
Fernandez
,
G.
Iglesias
,
R.
Carballo
,
A.
Castro
,
J. A.
Fraguela
,
F.
Taveira-Pinto
 et al, “
The new wave energy converter WaveCat: Concept and laboratory tests
,”
Mar. Struct.
29
(
1
),
58
70
(
2012
).
10.
G.
Iglesias
,
H.
Fernández
,
R.
Carballo
,
A.
Castro
, and
F.
Taveira-Pinto
, “
The WaveCat—Development of a new wave energy converter
,” in
Proceedings of the World Renewable Energy Congress
,
Linkoping, Sweden
(
Linköping University Electronic Press
, 2011).
11.
T.
Hayashi
,
M.
Hattori
,
T.
Kano
, and
M.
Shirai
, “
Hydraulic research on the closely spaced pile breakwater
,”
Coastal Eng.
50
,
12
(
1966
).
12.
M.
Isaacson
, “
Waves forces on compound cylinders
,” in
Proceedings of the Civil Engineering in the Oceans IV
,
ASCE
,
San Francisco
,
1979
, Vol.
1
.
13.
I.
López
and
G.
Iglesias
, “
Efficiency of OWC wave energy converters: A virtual laboratory
,”
Appl. Ocean Res.
44
(
0
),
63
70
(
2014
).
14.
J. M.
Paixão Conde
and
L. M. C.
Gato
, “
Numerical study of the air-flow in an oscillating water column wave energy converter
,”
Renewable Energy
33
(
12
),
2637
2644
(
2008
).
15.
F. O.
Rourke
,
F.
Boyle
, and
A.
Reynolds
, “
Marine current energy devices: Current status and possible future applications in Ireland
,”
Renewable Sustainable Energy Rev.
14
(
3
),
1026
1036
(
2010
).
16.
D.
Vicinanza
,
P.
Contestabile
,
J. Q. H.
Nørgaard
, and
T. L.
Andersen
, “
Innovative rubble mound breakwaters for overtopping wave energy conversion
,”
Coastal Eng.
88
(
0
),
154
170
(
2014
).
17.
T.
Setoguchi
and
M.
Takao
, “
Current status of self rectifying air turbines for wave energy conversion
,”
Energy Convers. Manage.
47
(
15–16
),
2382
2396
(
2006
).
18.
V.
Negro
,
J.-S.
López-Gutiérrez
,
M. D.
Esteban
, and
C.
Matutano
, “
Uncertainties in the design of support structures and foundations for offshore wind turbines
,”
Renewable Energy
63
(
0
),
125
132
(
2014
).
19.
M.
Esteban
,
J.
López-Gutiérrez
,
V.
Negro
,
C.
Matutano
,
F.
Gracía-Flores
, and
M.
Millán
, “
Offshore wind foundation design: Some key issues
,”
J. Energy Res. Technol.
136
(
5
),
97
103
(
2015
).
20.
J.
Abanades
,
D.
Greaves
, and
G.
Iglesias
, “
Wave farm impact on the beach profile: A case study
,”
Coastal Eng.
86
(
0
),
36
44
(
2014
).
21.
C.
Frid
,
E.
Andonegi
,
J.
Depestele
,
A.
Judd
,
D.
Rihan
,
S. I.
Rogers
 et al, “
The environmental interactions of tidal and wave energy generation devices
,”
Environ. Impact Assess. Rev.
32
(
1
),
133
139
(
2012
).
22.
G.
Iglesias
and
R.
Carballo
, “
Wave farm impact: The role of farm-to-coast distance
,”
Renewable Energy
69
(
0
),
375
385
(
2014
).
23.
L.
Margheritini
,
A. M.
Hansen
, and
P.
Frigaard
, “
A method for EIA scoping of wave energy converters—Based on classification of the used technology
,”
Environ. Impact Assess. Rev.
32
(
1
),
33
44
(
2012
).
24.
S. P.
Neill
,
J. R.
Jordan
, and
S. J.
Couch
, “
Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks
,”
Renewable Energy
37
(
1
),
387
397
(
2012
).
25.
M. A.
Shields
,
D. K.
Woolf
,
E. P. M.
Grist
,
S. A.
Kerr
,
A. C.
Jackson
,
R. E.
Harris
 et al, “
Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment
,”
Ocean Coastal Manage.
54
(
1
),
2
9
(
2011
).
26.
H. C. M.
Smith
,
C.
Pearce
, and
D. L.
Millar
, “
Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site
,”
Renewable Energy
40
(
1
),
51
64
(
2012
).
27.
A.
Azzellino
,
D.
Conley
,
D.
Vicinanza
, and
J. P.
Kofoed
, “
Marine renewable energies: Perspectives and implications for marine ecosystems
,”
Sci. World J.
2013
,
547563
.
28.
M.
Veigas
,
V.
Ramos
, and
G.
Iglesias
, “
A wave farm for an island: Detailed effects on the nearshore wave climate
,”
Energy
69
(
0
),
801
812
(
2014
).
29.
G.
Allan
,
M.
Gilmartin
,
P.
McGregor
, and
K.
Swales
, “
Levelised costs of wave and tidal energy in the UK: Cost competitiveness and the importance of ‘banded’ renewables obligation certificates
,”
Energy Policy
39
(
1
),
23
39
(
2011
).
30.
G. J.
Allan
,
I.
Bryden
,
P. G.
McGregor
,
T.
Stallard
,
J.
Kim Swales
,
K.
Turner
 et al, “
Concurrent and legacy economic and environmental impacts from establishing a marine energy sector in Scotland
,”
Energy Policy
36
(
7
),
2734
2753
(
2008
).
31.
G. J.
Dalton
,
R.
Alcorn
, and
T.
Lewis
, “
A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns
,”
Renewable Energy
40
(
1
),
80
89
(
2012
).
32.
J. P.
Deane
,
G.
Dalton
, and
B. P.
ÓGallachóir
, “
Modelling the economic impacts of 500 MW of wave power in Ireland
,”
Energy Policy
45
(
0
),
614
627
(
2012
).
33.
T.
Prässler
and
J.
Schaechtele
, “
Comparison of the financial attractiveness among prospective offshore wind parks in selected European countries
,”
Energy Policy
45
(
0
),
86
101
(
2012
).
34.
N.
Veatch
, “
The commercial perspectives for the wave energy
,” DTI Programmes of Sustainable Energy DTI/Pub URN 01/1011, ETSU T/06/00209/REP,
2001
.
35.
M.
Bilgili
,
A.
Yasar
, and
E.
Simsek
, “
Offshore wind power development in Europe and its comparison with onshore counterpart
,”
Renewable Sustainable Energy Rev.
15
(
2
),
905
915
(
2011
).
36.
V.
Ramos
and
G.
Iglesias
, “
Wind power viability on a small Island
,”
Int. J. Green Energy
11
(
7
),
741
760
(
2014
).
37.
G.
Corbetta
and
A.
Mbistrova
, see http://wwweweaorg/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2014pdf for The European offshore wind industry—Key trends and statistics
2014
, European Wind Energy Association (EWEA), 2015.
38.
R.
Cumarsaids
and
M.
Acmhainni
, see http://wwwmarineie/NR/rdonlyres/86491414-3E7E-48E5-A0E1-287CA9191C61/0/OceanEnergyStrategypdf for Ocean energy in Ireland, Department of Communications, Marine and Natural Resources, 2005 (last accessed November 13,
2013
).
39.
Marine Energy
, see http://www.setis.ec.europa.eu/system/files/Marine_Energy.pdf for update of the technology map for the SET-plan,
2011
.
40.
S.
Astariz
and
G.
Iglesias
, “
The economics of wave energy: A review
,”
Renewable Sustainable Energy Rev.
45
,
397
408
(
2015
).
42.
PB Power
,
2006
, Powering the Nation.
43.
E.E.Analyses
,
Renewable Energy Costs and Benefits to Society—RECABS
(
Ea Energy Analyses
,
2008
).
44.
Ernst & Young
, “
Cost of, financial support for offshore wind
,”
Ernst & Young Report No. URN: 09D/534
,
2009
, see http://webarchive.nationalarchives.gov.uk/+/http:/www.berr.gov.uk/files/file51142.pdf.
45.
Ernst & Young
, “
Impact of banding the renewables obligation—Costs of electricity generation
,” Ernst & Young,
2007
.
46.
Y.
Li
,
B. J.
Lence
, and
S. M.
Calisal
, “
An integrated model for estimating energy cost of a tidal current turbine farm
,”
Energy Convers. Manage.
52
(
3
),
1677
1687
(
2011
).
47.
G.
Aggidis
,
G.
Allan
,
A.
McCabe
,
P.
McGregor
,
R.
Rothschild
,
J.
Swales
 et al, “
Modelling the potential economic impact of tidal devices on the UK
,” University of Strathclyde Discussion Paper in Economics,
2010
.
48.
G.
Dalton
,
R.
Alcorn
, and
T.
Lewis
,
Operational Expenditure Costs for Wave Energy Projects; O/M, Insurance and Site Rent Conference Operational Expenditure Costs for Wave Energy Projects; O/M, Insurance and Site Rent
, Bilbao, Spain, 3rd International Conference on Ocean Energy, 6 October, Bilbao.
49.
M.
O'Connor
,
T.
Lewis
, and
G.
Dalton
, “
Operational expenditure costs for wave energy projects and impacts on financial returns
,”
Renewable Energy
50
(
0
),
1119
1131
(
2013
).
50.
S.
Astariz
and
G.
Iglesias
, “
The economics of wave energy: A review
,”
Renewable Sustainable Energy Rev.
45
(
0
),
397
408
(
2015
).
51.
Nuclear Energy Agency and International Energy Agency
,
Projected Costs of Generating Electricity
(
Nuclear Energy Agency and International Energy Agency
,
2005
).
52.
S.
Astariz
,
A.
Vazquez
, and
G.
Iglesias
, “
Evaluation of the levelised costs of tidal, wave and offshore wind energy
,” in
3rd IAHR Europe Congress
,
Porto
,
Portugal
,
2014
.
53.
M.
Previsic
, “
System level design, performance, and costs for San Francisco California Pelamis offshore wave power plant
,”
Report No. E2I EPRI Global-006A-SF
,
2004
, see http://samcleanswater.org/information/006_San_Francisco_Pelamis_Conceptual_Design_12-11-04.pdf.
54.
BWEA
, “
Marine renewable energy-state of the industry report
,”
2009
, see http://www.bwea.com/pdf/marine/Marine_report_enteclogo.pdf.
55.
S.
Krohn
,
P.
Morthorst
, and
S.
Awebuch
, “
The economics of wind energy
,” EWEA
2009
, see http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf.
56.
J.
Yang
and
B.
Chen
, “
Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China
,”
Renewable Sustainable Energy Rev.
27
,
559
568
(
2013
).
57.
A.
O'Keeffe
and
C.
Hagget
, “
An investigation into the potential barriers facing the development of offshore wind energy in Scotland: Case study—Firth of forth offshore wind farm
,”
Renewable Sustainable Energy Rev.
16
,
3711
3721
(
2012
).
58.
D.
Milborrow
, “
Breaking down the cost of wind turbine maintenance
,” in Windpower (
2010
), see http://www.windpowermonthly.com/article/1010136/breaking-down-cost-wind-turbine-maintenance.
59.
M. I.
Blanco
, “
The economics of wind energy
,”
Renewable Sustainable Energy Rev.
13
(
6–7
),
1372
1382
(
2009
).
60.
D. M. A.
Lawrence
,
Offshore Wind Farm Operations and Maintenance—Benchmarks, Costs and Best Practices for Current and Future Wind Farms
, edited by
T. A.
Cook
(
Berlin
,
2011
).
61.
M.
Junginger
,
A.
Faaij
, and
W.
Turkenburg
, “
Cost reduction prospects for offshore wind farms
,”
Wind Eng.
28
,
97
118
(
2004
).
63.
J.
Lemming
,
P. E.
Morthorst
, and
N.-E.
Clausen
, “
Offshore Wind Poser Experiences, Potential and Key Issues for Deployment
,” Risø National Laboratory for Sustainable Energy, Denmark, 2008, see http://orbit.dtu.dk/fedora/objects/orbit:81306/datastreams/file_3738482/content.
64.
S.
Astariz
and
G.
Iglesias
, “
Co-located wave-wind farms: Economic assessment as a function of layout
,”
Renewable Energy
83
,
837
849
(
2015
).
65.
J.
Callaghan
,
Future Marine Energy Results of the Marine Energy Challenge: Cost Competitiveness and Growth of Wave and Tidal Stream Energy
, edited by
C.
Trust
(
London, United Kingdom
,
2006
).
66.
A.
Vazquez
and
G.
Iglesias
, “
Device interactions in reducing the cost of tidal stream energy
,”
Energy Convers. Manage.
97
(
0
),
428
438
(
2015
).
67.
J.
Houde
,
Cost-Benefit Analysis of Tidal Energy Generation in Nova Scotia: A Scenario for a Tidal Farm with 300 MW of Installed Capacity in the Minas Passage in 2020
(
Dalhousie University Halifax
,
Nova Scotia
,
2012
).
69.
Tidal Energy Technology Brief, IRENA Ocean Energy Technology Brief 3, 2014, see http://www.irena.org/DocumentDownloads/Publications/Tidal_Energy_V4_WEB.pdf.
70.
C.
Caballeras
, “
Estudio de plantas de producción de energías renovables con aprovechamiento de la energía del mar
,” Departamento de Electricidad, Universidad Carlos III de Madrid, Report No. 5,
2011
.
71.
Carbon Trust, Capital, Operating and Maintenance Costs,
2006
.
72.
See http://www.vicinaycemvisa.com for VicinayCemvisa.
73.
B.
Couñago
and
R.
Barturen
, “
Estudio técnico-finciero sobre la construcción de un parque eólico marino flotante en el litoral español
,”
Ing. Nav.
886
,
85
105
(
2010
), see http://oa.upm.es/6277/2/Estudio_parque_eolico_marino_flotante.pdf.
74.
F. J. M.
Farley
, “
Capture width for arrays of wave energy converters
,”
Energy and Climate Change Division
,
University of Southampton
,
Highfield, Southampton
, see http://www.iwwwfb.org/Abstracts/iwwwfb28/iwwwfb28_18.pdf.
75.
X.
Garnaud
and
C. C.
Mei
, “
Bragg scattering and wave-power extraction by an array of small buoys
,”
Proc. R. Soc. London, Ser. A
466
,
79
(
2009
).
76.
Waveplam
, “
Wave energy: A guide for investors and politicians
,” in
Waveplam
, edited by
EPoIE
(
2010
), see http://www.waveplam.eu/files/downloads/D.3.2.Guidelienes_FINAL.pdf.
77.
P. F.
Díez
, “
Técnicas para aprovechar la energía de las olas
,” Universidad de Cantabria, Report No. 1,
2002
(in
Spanish
).
78.
B. C.
Olmo
, “
Estudio de plantas de producción de energías renovables con aprovechamiento de la energía del mar
,” Departamento de Electricidad, Universidad Carlos III de Madrid, Report No. 1,
2010
(in Spanish).
79.
Oxera
, “
What is the potential for commercially viable renewable generation technologies?
,” Industry IrpftDoTa,
2005
, see http://www.oxera.com/Latest-Thinking/Publications/Reports/2005/Welcome-to-Oxera-Insight-Publications-All-re.aspx.
80.
Ltd RE
, “
Implementation of EU 2020 renewable target in the UK electricity sector: Renewable support schemes
,” A report for the Department of Business EaRR,
2008
, see http://webarchive.nationalarchives.gov.uk/+/http:/www.berr.gov.uk/files/file46778.pdf.
82.
See http://comunidad.eduambiental.org/file.php/1/curso/contenidos/docpdf/capitulo22.pdf for Energía del oleaje (last accessed November 2,
2013
) (in Spanish).
83.
W. M. J.
Batten
and
A. B.
Bahaj
, “
An assessment of growth scenarios and implications for ocean energy industries in Europe
,” in
Seventh European Wave and Tidal Energy Conference
,
Porto, Portugal
,
2007
.
84.
RenewableUK, BVGassociates
, and
G.
Hassan
, “
Wave and Tidal Energy in the UK
,” Conquering Challenges, Generating Growth,
2013
.
85.
Department of Energy & Climate Change, UK Government
, see https://www.gov.uk/government/publications/investing-in-renewable-technologies-cfd-contract-terms-and-strike-prices for investing in renewable technologies—CfD contract terms: strike prices (2013) (last accessed August 8,
2015
).
86.
Eurostat
, see http://ec.europa.eu/eurostat/statistics-explained/index.php/File:Half_yearly_electricity_and_gas_prices_EUR_new.png for half yearly electricity and gas prices EUR (last accessed August 8,
2015
).
87.
W.
Hoffmann
, “
PV solar electricity industry: Market growth and perspective
,”
Sol. Energy Mater. Sol. Cells
90
(
18–19
),
3285
3311
(
2006
).
88.
M.
Junginger
,
A.
Faaij
, and
W. C.
Turkenburg
, “
Global experience curves for wind farms
,”
Energy Policy
33
(
2
),
133
150
(
2005
).
89.
S.
Astariz
and
G.
Iglesias
, “
Wave energy vs. Other energy sources: A reassessment of the economics
,”
Int. J. Green Energy
(in press).
90.
M.
Renewables
, see http://webarchive.nationalarchives.gov.uk/20060802134639/dti.gov.uk/files/file27061.pdf for wave and tidal-stream energy demonstration scheme, DTI Energy Group,
2005
.
91.
IDAE
,
Factores de conversión a energía primaria y facto de emisión de CO2 para carburantes, usos térmicos y electricidad
(
Spanish Government
,
2010
).
92.
A.
Galetovic
and
C.
Muñoz
, “
Wind, coal, and the cost of environmental externalities
,”
Energy Policy
65
,
1385
1391
(
2013
).
93.
M.
Gaterell
and
M. E.
McEvoy
, “
The impact of energy externalities on the cost effectiveness of energy efficiency measures applied to dwellings
,”
Energy Build.
37
(
11
),
1017
(
2005
).
94.
L.
Kitson
,
P.
Wooders
, and
T.
Moerenhout
, “
Subsidies and external costs in electric power generation: A comparative review of estimates
,” International Institute for Sustainable Development,
2011
, see https://www.iisd.org/gsi/sites/default/files/power_gen_subsidies.pdf.
95.
A.
Vazquez
and
G.
Iglesias
, “
Public perceptions and externalities in tidal stream energy: A valuation for policy making
,”
Ocean Coastal Manage.
105
(
0
),
15
24
(
2015
).
96.
A.
Azzellino
,
V.
Ferrante
,
J. P.
Kofoed
,
C.
Lanfredi
, and
D.
Vicinanza
, “
Optimal siting of offshore wind-power combined with wave energy through a marine spatial planning approach
,”
Int. J. Mar. Energy
3–4
(
0
),
e11
e25
(
2013
).
97.
F.
Caballero
,
E.
Sauma
, and
F.
Yanine
, “
Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block
,”
Energy
61
(
0
),
248
261
(
2013
).
98.
E. D.
Stoutenburg
,
N.
Jenkins
, and
M. Z.
Jacobson
, “
Power output variations of co-located offshore wind turbines and wave energy converters in California
,”
Renewable Energy
35
(
12
),
2781
2791
(
2010
).
99.
M. J.
Muliawan
,
M.
Karimirad
, and
T.
Moan
, “
Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter
,”
Renewable Energy
50
(
0
),
47
57
(
2013
).
100.
C.
Pérez-Collazo
,
D.
Greaves
, and
G.
Iglesias
, “
A review of combined wave and offshore wind energy
,”
Renewable Sustainable Energy Rev.
42
(
0
),
141
153
(
2015
).
101.
See Power-technology.com for Green Ocean Energy Wave Trader, United Kingdom,
2010
.
102.
ECI
, “
Variability of UK marine resources
,” see http://www.marinerenewables.ca/wp–content/uploads/2012/11/Variability-of-UK-marine-resources.pdf for Environmental Change Institute (ECI), University of Oxford, The Carbon Trust,
2005
.
103.
ECI
, “
Diversified renewable energy sources
,” Environmental Change Institute (ECI), The Carbon Trust,
2006
.
104.
C.
Pérez-Collazo
and
G.
Iglesias
, “
Integration of wave energy converters and offshore windmills
,” in
International Conference on Ocean Energy (ICOE)
,
Dublin
,
Ireland
,
2012
.
105.
C.
Pérez-Collazo
,
M. M.
Jakobsen
,
H.
Buckland
, and
J.
Fernández-Chozas
, “
Synergies for a wave-wind energy concept
,” in
Conference EWEA Offshore
,
Frankfurt
,
Germany
(The European Wind Energy Association, 2013).
106.
G. R. G.
Hoste
,
M. J.
Dvorak
, and
M. Z.
Jacobson
, “
Matching hourly and peak demand by combining different renewable energy sources
,” Sanford University, Department of Civil and Environmental Engineering,
2009
, see http://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/HosteFinalDraft.
107.
T.
Taniguchi
,
S.
Ishida
, and
Y.
Minami
, “
A feasibility study on hybrid use of ocean renewable energy resources around Japan
,” in
32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
(
ASME
, 2013), Vol.
8
, Paper No. OMAE2013-11040, pp. V008T09A065.
108.
G.
Caraiman
,
C.
Nichita
,
V.
Mînzu
,
B.
Dakyio
, and
C. H.
Jo
, “
Concept study of offshore wind and tidal hybrid conversion based on real time simulation
,” in
International Conference on Renewable Energies and Power Quality
,
Las Palmas de Gran Canaria
,
Spain
, 2010.
109.
F.
Fusco
,
G.
Nolan
, and
J. V.
Ringwood
, “
Variability reduction through optimal combination of wind/wave resources—An Irish case study
,”
Energy
35
(
1
),
314
325
(
2010
).
110.
H.
Lund
, “
Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply
,”
Renewable Energy
31
(
4
),
503
515
(
2006
).
111.
A. R.
Bento
,
E.
Rusu
,
P.
Martinho
, and
C. G.
Soares
, “
Assessment of the changes induced by a wave farm in the nearshore wave conditions
,”
Comput. Geosci.
71
,
50
61
(
2014
).
112.
J.
Abanades
,
D.
Greaves
, and
G.
Iglesias
, “
Coastal defence using wave farms: The role of farm-to-coast distance
,”
Renewable Energy
75
(
0
),
572
582
(
2015
).
113.
D. L.
Millar
,
H. C. M.
Smith
, and
D. E.
Reeve
, “
Modelling analysis of the sensitivity of shoreline change to a wave farm
,”
Ocean Eng.
34
(
5–6
),
884
901
(
2007
).
114.
A. T.
Zanopol
,
F.
Onea
, and
E.
Rusu
, “
Coastal impact assessment of a generic wave farm operating in the Romanian nearshore
,”
Energy
72
(
0
),
652
670
(
2014
).
115.
EU-OEA, Oceans of Energy
, European Ocean Energy Roadmap 2010–2050, Bietlot, Belgium,
2010
, see http://www.waveplam.eu/files/newsletter7/European%20Ocean%20Energy%20Roadmap.pdf.
116.
J.
Moccia
,
A.
Arapogianni
,
J.
Wilkes
,
C.
Kjaer
, and
R.
Gruet
, “
Pure power
,” Wind energy targets for 2020 and 2030, European Wind Energy Association, Brussels, Belgium,
2011
, see http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/Pure_Power_Full_Report.pdf.
117.
See Power-technology.comGreen for Ocean Energy Wave Trader, United Kingdom,
2010
.
118.
S.
Ponce de Leon
,
J. H.
Bettencourt
, and
N.
Kjerstad
, “
Simulation of irregular waves in an offshore wind farm with a spectral wave model
,”
Cont. Shelf Res.
31
,
1541
1557
(
2011
).
119.
C.
Matutano
,
V.
Negro
,
J.-S.
López-Gutiérrez
, and
M. D.
Esteban
, “
Scour prediction and scour protections in offshore wind farms
,”
Renewable Energy
57
(
0
),
358
365
(
2013
).
120.
S.
Astariz
,
J.
Abanades
,
C.
Perez-Collazo
, and
G.
Iglesias
, “
Improving wind farm accessibility for operation & maintenance through a co-located wave farm: Influence of layout and wave climate
,”
Energy Convers. Manage.
95
(
0
),
229
241
(
2015
).
121.
S.
Astariz
,
C.
Perez-Collazo
,
J.
Abanades
, and
G.
Iglesias
, “
Towards the optimal design of a co-located wind-wave farm
,”
Energy
84
,
15
24
(
2015
).
122.
S.
Astariz
,
C.
Perez-Collazo
,
J.
Abanades
, and
G.
Iglesias
, “
Co-located wind-wave farm synergies (operation & maintenance): A case study
,”
Energy Convers. Manage.
91
(
0
),
63
75
(
2015
).
123.
G.
Caraiman
,
C.
Nichita
,
V.
Mînzu
,
B.
Dakyio
, and
C.
Jo
, “
Concept study of offshore wind and tidal hybrid conversion based on real time simulation
,” in
International Conference on Renewable Energies and Power Quality
,
Las Palmas de Gran Canaria
,
Spain
, 13–15 April
2010
.
124.
C.
Pérez-Collazo
,
S.
Astariz
,
J.
Abanades
,
D.
Greaves
, and
G.
Iglesias
, “
Co-located wave and offshore wind farms: A preliminary case study of a hybrid array
,” in
International Conference in Coastal Engineering (ICCE)
,
Seoul
,
South Korea
, 2014.
125.
M.
Borg
,
M.
Collu
, and
F. P.
Brennan
, “
Use of a wave energy converter as a motion suppression device for floating wind turbines
,”
Energy Procedia
35
(
0
),
223
233
(
2013
).
126.
R.
Farrugia
,
T.
Sant
, and
D.
Micallef
, “
Investigating the aerodynamic performance of a model offshore floating wind turbine
,”
Renewable Energy
70
(
0
),
24
30
(
2014
).
127.
M.
Veigas
and
G.
Iglesias
, “
Potentials of a hybrid offshore farm for the island of Fuerteventura
,”
Energy Convers. Manage.
86
(
0
),
300
308
(
2014
).
128.
R. H.
Jongbloed
,
J. T.
van der Wal
, and
H. J.
Lindeboom
, “
Identifying space for offshore wind energy in the North Sea. Consequences of scenario calculations for interactions with other marine uses
,”
Energy Policy
68
(
0
),
320
333
(
2014
).
129.
EWEA
, “
Deep water. The next step for offshore wind energy
,” A report by the European Wind Energy Association (EWEA),
2013
, see http://www.ewea.org/fileadmin/files/library/publications/reports/Deep_Water.pdf.
130.
J.
Hanssen
, see http://www.proexca.es/Portals/0/ for Wind Wave Power,
2011
.
You do not currently have access to this content.