The world will need greatly increased energy supply in coming years because of the rapidly increasing world population and depleting natural resources. For a long time, conventional energy sources have been utilized for power generation, but now it is of great concern that the rapid depletion of conventional sources added with their economic and environmental concerns are incompatible to address issues like growing electricity demand and environmental damages. Utilization of the alternative energy sources is compulsory to minimize the energy crisis around the world. Based on the alternative energy sources, a number of power generation systems have been designed to contribute for the management of optimized energy supply systems. The unpredictable nature of alternative energy sources is their common drawback, and they do not harness usable power for some considerable duration of time over the year. Therefore, trends are in progress to integrate two or more than two of these alternative energy systems to meet the required electricity supply in power generation operations. These systems are designated as hybrid systems and can be grid connected or off-grid depending upon their purpose and mode of fabrication. Off grid hybrid systems are popular for the electrification of the isolated and far-flung areas, where the grid supply is absent. This study mainly focuses on main 10 off grid, bi-source hybrid systems for power generation highlighting their role in energy stability. Systems' hybridization, power generation, energy flow schemes, operation schemes, and storage and backup needs have been addressed thoroughly in this study to provide a handy reference to stake holders for further work in this regime.

1.
V.
Wouk
, “
Hybrids: Then and now
,”
IEEE Spectrum
32
(
7
)
16
21
(
1995
).
2.
M. K.
Deshmukh
and
S. S.
Deshmukh
, “
Modeling of hybrid renewable energy systems
,”
Renewable Sustainable Energy Rev.
12
(
1
),
235
249
(
2008
).
3.
R.
Ramakumar
, “
Electric power generation: conventional methods
,”
The Electric Power Engineering Handbook
, edited by
L. L.
Grigsby
(
CRC Press LLC
,
Boca Raton
,
2001
), Chap. II.
4.
Z. M.
Salameh
and
I.
Safari
, “
Optimum windmill-site matching
,”
IEEE Trans. Energy Convers.
7
(
4
),
669
676
(
1992
).
5.
B. S.
Borowy
and
Z. M.
Salameh
, “
Optimum photovoltaic array size for a hybrid wind/PV system
,”
IEEE Trans. Energy Convers.
9
(
3
),
482
488
(
1994
).
6.
J. A.
Castle
,
J. M.
Kallis
,
S. M.
Moite
, and
N. A.
Marshall
, “
Analysis of merits of hybrid wind/photovoltaic concept for stand-alone systems
,”
15th IEEE Photovoltaic Specialists Conference
, May
1981
.
7.
A. D.
Bagul
,
Z. M.
Salmeh
, and
B.
Borowy
, “
Sizing of a stand-alone hybrid wind-photovoltaic system using a three-event probability density approximation
,”
Sol. Energy
56
(
4
),
323
335
(
1996
).
8.
S. R.
Vosen
and
J. O.
Keller
, “
Hybrid energy storage systems for stand-alone electric power systems: Optimization of system performance and cost through control strategies
,”
Int. J Hydrogen Energy
24
,
1139
1156
(
1999
).
9.
S.
Gomaa
,
A. K. A.
Seoud
, and
H. N.
Kheiralla
, “
Design and analysis of photovoltaic and wind energy hybrid systems in Alexandria, Egypt
,”
Renewable Energy
6
(
5–6
),
643
647
(
1995
).
10.
C. V.
Nayar
,
S. J.
Phillips
,
W. L.
James
,
T. L.
Pryor
,
D.
Remmer
,
P.
Electronics
, and
S.
Street
, “
Novel wind/diesel/battery hybrid energy system
,”
Solar Energy
51
(
1
),
65
78
(
1993
).
11.
B.
Wichert
, “
Pv-diesel hybrid energy systems for remote area power generation—A review of current and future developments
,”
Renewable Sustainable Energy Rev.
1
(
3
),
209
228
(
1997
).
12.
T.
Valentino
,
P.
McCluer
, and
E.
Hughes
, “
Investigation of geothermal energy technologies and gas turbine hybrid system
,”
Geotherm. Res. Council Trans.
20
,
195
201
(
1996
).
13.
R.
Ramakumar
and
W. L.
Hughes
, “
Renewable energy sources and rural development in developing countries
,”
IEEE Trans. Educ.
24
(
3
),
242
251
(
1981
).
14.
S.
Hozumi
, “
Development of hybrid solar systems using solar thermal, photovoltaics, and wind energy,”
Int. J. Sol. Energy
4
(
5
),
257
280
(
1986
) [translated from J. Jpn. Sol. Energy Soc. 11(4), 15 (1986)].
15.
F.
Physik
and
U.
Oldenburg
, “
Wind-solar hybrid electrical supply systems. Results from a simulation model and optimization with respect to energy pay
,”
Solar Wind Technol.
5
(
3
),
239
247
(
1988
).
16.
R.
Ramakumar
,
H. J.
Allison
, and
W. L.
Hughes
, “
Review paper prospects for tapping solar energy on a large scale
,”
Sol. Energy
16
,
107
115
(
1974
).
17.
R.
Ramakumar
,
I.
Abouzahr
,
K.
Krishnan
, and
K.
Ashenayi
, “
Design scenarios for integrated renewable energy systems
,”
IEEE Trans. Energy Convers.
10
(
4
),
736
746
(
1995
).
18.
R.
Ramakumar
,
H. J.
Allison
, and
W. L.
Hughes
, “
Solar energy conversion and storage systems for the future
,”
IEEE Trans. Power Appar. Syst.
94
(
6
),
1926
1934
(
1975
).
19.
S.
Rahman
and
K.
Tam
, “
A feasibility study of photovoltaic-fuel cell hybrid energy system
,”
IEEE Trans. Energy Convers.
3
(
1
),
50
55
(
1988
).
20.
A. a.
Lahimer
,
M. a.
Alghoul
,
F.
Yousif
,
T. M.
Razykov
,
N.
Amin
, and
K.
Sopian
, “
Research and development aspects on decentralized electrification options for rural household
,”
Renew. Sustain. Energy Rev.
24
,
314
324
(
2013
).
21.
“U.S. DOE Annual Energy Outlook 2014” available at http://www.eia.gov/.
22.
“OpenEI Database,” available at http://en.openei.org/.
23.
“Energy Efficiency,” available at http://www.mpoweruk.com/.
24.
“Levelized Cost of Energy—Version 8.0,” available at http://www.lazard.com/PDF/Levelized%20Cost%20of%20Energy%20-%20Version%208.0.pdf.
25.
“Capacity Factors for Utility Scale Generators Primarily Using Fossil Fuels, January 2013-March 2015,” available at http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_6_07_a.
26.
M. a.
Elhadidy
and
S. M.
Shaahid
, “
Promoting applications of hybrid (wind + photovoltaic + diesel + battery) power systems in hot regions
,”
Renew. Energy
29
(
4
),
517
528
(
2004
).
27.
M. a.
Elhadidy
and
S. M.
Shaahid
, “
Parametric study of hybrid (wind + solar + diesel) power generating systems
,”
Renewable Energy
21
(
2
),
129
139
(
2000
).
28.
G.
Notton
,
M.
Muselli
, and
A.
Louche
, “
Atonomous hybrid photovoltaic power plant using a back-up generator: A case study in a mediterranean island
,”
Renewable Energy
7
(
4
),
371
391
(
1996
).
29.
J. H.
Lim
, “
Optimal combination and sizing of a new and renewable hybrid generation system
,”
Int. J. Future Gener. Commun. Networking
5
(
2
),
43
59
(
2012
).
30.
C.
Marnay
,
G.
Venkataramanan
,
M.
Stadler
,
a. S.
Siddiqui
,
R.
Firestone
, and
B.
Chandran
, “
Optimal technology selection and operation of commercial-building microgrids
,”
IEEE Trans. Power Syst.
23
(
3
),
975
982
(
2008
).
31.
R.
Chedid
,
H.
Akiki
, and
S.
Rahman
, “
A decision support technique for the design of hybrid solar-wind power system
,”
IEEE Trans. Energy Convers.
13
(
1
),
76
83
(
1998
).
32.
F.
Giraud
and
Z. M.
Salameh
, “
Steady-state performance of a grid-connected rooftop hybrid wind—photovoltaic power system with battery storage
,”
IEEE Trans. Energy Convers.
16
(
1
),
1
7
(
2001
).
33.
W. D.
Kellogg
,
M. H.
Nehrir
,
G.
Venkataramanan
, and
V.
Gerez
, “
Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV Systems
,”
IEEE Trans. Energy Convers.
13
(
1
),
70
75
(
1998
).
34.
B. S.
Borowy
and
Z. M.
Salameh
, “
Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system
,”
IEEE Trans. Energy Convers.
11
(
2
),
367
375
(
1996
).
35.
G.
Notton
,
M.
Muselli
,
P.
Poggi
, and
A.
Louche
, “
Decentralized wind energy systems providing small electrical loads in remote areas
,”
Int. J. Energy Res.
25
,
141
164
(
2001
).
37.
G. C.
Hua
,
W. A.
Tabisz
,
C. S.
Leu
,
N.
Dai
,
R.
Watson
, and
F. C.
Lee
, “
Development of a dc distributed power system
,”
Ninth Annual Applied Power Electronics Conference and Exposition, 1994. APEC '94. Conference Proceedings
1994
, pp.
763
769
.
38.
R.
Noroozian
,
M.
Abedi
,
G. B.
Gharehpetian
, and
S. H.
Hosseini
, “
Distributed resources and DC distribution system combination for high power quality
,”
Int. J. Electr. Power Energy
32
(
7
),
769
781
(
2010
).
39.
K.
Engelen
,
E. L.
Shun
,
P.
Vermeyen
,
I.
Pardon
,
R.
D'hulst
,
J.
Driesen
, and
R.
Belmans
, “
The feasibility of small-scale residential DC distribution systems
,”
IECON 2006 - 32nd Annu. Conf. IEEE Ind. Electron., Nov.
2006
, pp.
2618
2623
.
40.
M.
Brenna
,
G. C.
Lazaroiu
, and
E.
Tironi
, “
High power quality and DG integrated low voltage dc distribution system
,”
IEEE Power Engineering Society General Meeting
,
2006
, pp.
1
6
.
41.
M. E.
Baran
and
N. R.
Mahajan
, “
DC Distribution for industrial systems: Opportunities and challenges
,”
IEEE Trans. Ind. Appl.
39
(
6
),
1596
1601
(
2003
).
42.
L.
Maharjan
,
S.
Inoue
, and
H.
Akagi
, “
A transformerless energy storage system based on a cascade multilevel pwm converter with star configuration
,”
IEEE Trans. Ind. Appl.
44
(
5
),
1621
1630
(
2008
).
43.
M.
Brenna
,
E.
Tironi
, and
G.
Ubezio
, “
Proposal of a local DC distribution network with distributed energy resources
,”
2004 11th International Conference on Harmonics Quality Power (IEEE Cat. No.04EX951)
,
2004
, pp.
397
402
.
44.
T.
Kaipia
,
P.
Salonen
,
J.
Lassila
, and
J.
Partanen
, “
Possibilities of the low voltage dc distribution systems
,” available at: http://www.upn.se/htmlfiles/Glava/Referenser/Ref%206%20Possibilities%20of%20low%20voltage%20DC%20distribution.pdf.
45.
C. K.
Sao
and
P. W.
Lehn
, “
Control and power management of converter fed microgrids
,”
IEEE Trans. Power Syst.
23
,
1088
1098
(
2008
).
46.
P. K.
Sood
,
T. A.
Lipo
, and
I. G.
Hansen
, “
A versatile power converter for high-frequency link systems
,”
IEEE Trans. Power Electron.
3
(
4
),
249
256
(
1988
).
47.
H.
Kakigano
,
M.
Nomura
, and
T.
Ise
, “
Loss evaluation of DC distribution for residential houses compared with AC system
,”
IEEE 2010 International Power Electronics Conference (IPEC)
,
2010
, pp.
480
486
.
48.
D.
Nilsson
and
A.
Sannino
, “
Efficiency analysis of low- and medium- voltage dc distribution systems
,”
IEEE Power Engineering Society General Meeting
,
2004
, pp.
1
7
.
49.
A. T. A. H.
Link
, “
A three-phase AUAC high-frequency link matrix converter for VSCF applications
,”
IEEE 34th Annual Power Electronics Specialist Conference
,
1971
, Vol. 4, pp.
1971
1976
.
50.
D.
Salomonsson
and
A.
Sannino
, “
Low-voltage DC distribution system for commercial power systems with sensitive electronic loads
,”
IEEE Trans. Power delivery
22
(
3
),
1620
1627
(
2007
).
51.
D. L.
Logue
and
P. T.
Krein
, “
Preventing instability in Dc distribution systems by using power buffering
,”
IEEE 32nd Annual Power Electronics Specialists Conference
,
2001
, Vol.
1
, pp.
33
37
.
52.
H.
Pang
,
E.
Lo
, and
B.
Pong
, “
DC electrical distribution systems in buildings
,”
IEEE 2nd International Conference on Power Electronics Systems and Applications
,
2006
, pp.
115
119
.
53.
P.
Zhan
,
C.
Li
,
J.
Wen
,
Y.
Hua
,
M.
Yao
, and
N.
Li
, “
Research on hybrid multi-terminal high-voltage DC technology for offshore wind farm integration
,”
J. Mod. Power Syst. Clean Energy
1
,
34
41
(
2013
).
54.
D. J.
Hammerstrom
, “
AC Versus DC distribution systems—Did we get it right?
IEEE Power Engineering Society General Meeting
,
2007
, pp.
1
5
.
55.
D. P.
Kaundinya
,
P.
Balachandra
, and
N. H.
Ravindranath
, “
Grid-connected versus stand-alone energy systems for decentralized power—A review of literature
,”
Renew. Sustain. Energy Rev.
13
(
8
),
2041
2050
(
2009
).
56.
A. H.
Al-badi
and
H.
Bourdoucen
, “
Economic analysis of hybrid power system for rural electrification in Oman
,”
IEEE 2nd International Conference on Adaptive Science & Technology
,
2009
, pp.
284
289
.
57.
M.
Hossan
,
M.
Shakawat
, and
M. M.
Hossain
, “
Optimization and modeling of a hybrid energy system for off-grid electrification
,” in
2011 IEEE 10th International Conference on Environment and Electrical Engineering (EEEIC) IEEE
,
2011
, pp.
1
4
.
58.
A.
Qais
,
M. M.
Othman
,
N.
Khamis
, and
I.
Musirin
, “
Optimal sizing and operational strategy of PV and micro-hydro
,” in
2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO), IEEE
,
2013
, pp.
714
717
.
59.
M.
Khan
,
R.
Jidin
,
J.
Pasupuleti
, and
S. A.
Shaaya
, “
Optimal combinations of PV, wind, micro-hydro, and diesel systems for a seasonal load demand
,” in
2014 IEEE International Conference on Power and Energy (PECon), IEEE
,
2014
, pp.
171
176
.
60.
M.
Sadiqi
,
A.
Pahwa
, and
R. D.
Miller
, “
Basic design and cost optimization of a hybrid power system for rural communities in Afghanistan
,” in
North American Power Symposium (NAPS), 2012, IEEE
,
2012
, pp.
1
6
.
61.
N.
Varshney
,
M. P.
Sharma
, and
D. K.
Khatod
, “
Sizing of hybrid energy system using HOMER”
Int. J. Emerging Technol. Adv. Eng.
3
(
6
),
436
442
(
2013
).
62.
A. B.
Kanase-Patil
,
R. P.
Saini
, and
M. P.
Sharma
, “
Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India
,”
Renewable Energy
36
(
11
)
2809
2821
(
2011
).
63.
S.
Soedibyo
,
H.
Suryoatmojo
,
I.
Robandi
, and
M.
Ashari
, “
Optimal design of fuel-cell, wind and micro-hydro hybrid system using genetic algorithm
,”
TELKOMNIKA
10
(
4
),
695
702
(
2012
).
64.
B.
Tudu
,
K. K.
MandaI
, and
N.
Chakraborty
, “
Optimal design and performance evaluation of a grid independent hybrid micro hydro-solar-windfuel cell energy system using meta-heuristic techniques
,”
IEEE Proceedings of 2014 1st International Conference on Non-Conventional Energy
(ICONCE
2014
), pp.
89
93
.
65.
P. C.
Roy
,
A.
Majumder
, and
N.
Chakraborty
, “
Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island
,”
AIP Conf. Proc.
1298
(
1
),
260
265
(
2010
).
66.
S. K.
Nandi
and
H. R.
Ghosh
, “
A wind–PV-battery hybrid power system at Sitakunda in Bangladesh
,”
Energy Policy
37
(
9
)
3659
3664
(
2009
).
67.
M.
Mahalakshmi
and
S.
Latha
, “
An economic and environmental analysis of biomass-solar hybrid system for the textile industry in India,”
Turkish J. Electr. Eng. Comput. Sci.
(in press), pdf available at http://journals.tubitak.gov.tr/elektrik/inpress.htm.
68.
S. R.
Pradhan
,
P. P.
Bhuyan
,
S. K.
Sahoo
, and
G. R. K. D. S.
Prasad
, “
Design of Standalone Hybrid Biomass & PV System of an Off-Grid House in a Remote Area
,”
Int. J. Eng. Res. Appl.
3
,
433
437
(
2013
), pdf available at http://www.ijera.com/papers/Vol3_issue6/BU36433437.pdf.
69.
J.
Lagorse
,
M.
Simoes
,
a.
Miraoui
, and
P.
Costerg
, “
Energy cost analysis of a solar-hydrogen hybrid energy system for stand-alone applications
,”
Int. J. Hydrogen Energy
33
(
12
),
2871
2879
(
2008
).
70.
K. M.
Krishna
, “
Optimization analysis of microgrid using HOMER—A case study
,” in
2011 Annual IEEE India Conference (INDICON), IEEE
,
2011
, pp.
1
5
.
71.
A. K.
Sikder
,
N. A.
Khan
, and
A.
Hoque
, “
Design and optimal cost analysis of hybrid power system for Kutubdia island of Bangladesh
,” in
2014 International Conference on Electrical and Computer Engineering (ICECE), IEEE
,
2014
, pp.
729
732
.
72.
N. A.
Khan
,
A. K.
Sikder
, and
S. S.
Saha
, “
Optimal planning of off-grid solar-wind-tidal hybrid energy system for sandwip island of Bangladesh
,” in
2014 2nd International Conference on Green Energy and Technology (ICGET), IEEE
,
2014
, pp.
41
44
.
73.
S.
Leva
and
D.
Zaninelli
, “
Hybrid renewable energy-fuel cell system: Design and performance evaluation
,”
Electric Power Systems Res.
79
(
2
),
316
324
(
2009
).
74.
M. S.
Alam
and
D. W.
Gao
, “
Modeling and analysis of a wind/PV/fuel cell hybrid power system in HOMER
,” in
2nd IEEE Conference on Industrial Electronics and Applications, 2007, ICIEA 2007, IEEE
,
2007
, pp.
1594
1599
.
75.
M.
Kesraoui
, “
Designing a wind/solar/biomass electricity supply system for an Algerian isolated village
,” in
13th European Conference on Power Electronics and Applications, 2009, EPE'09, IEEE
,
2009
, pp.
1
6
.
76.
J. K.
Maherchandani
,
C.
Agarwal
, and
M.
Sahi
, “
Economic feasibility of hybrid biomass/PV/wind system for remote village using HOMER
,”
Int. J. Adv. Res. Electr., Electron, Instrum. Eng.
1
(
2
),
49
53
(
2012
), pdf available at http://www.ijareeie.com/upload/august/2_Economic%20Feasibility%20of%20Hybrid.pdf.
77.
A. G.
Ter-Gazarian
and
N.
Kagan
, “
Design model for electrical distribution systems considering renewable, conventional and energy storage units
,”
IEE Proc. C
139
(
6
),
499
504
(
1992
), pdf available at http://digital-library.theiet.org/content/journals/10.1049/ip-c.1992.0069.
78.
N. M.
Razali
and
A. H.
Hashim
, “
Backward reduction application for minimizing wind power scenarios in stochastic programming
,” in
4th International Power Engineering and Optimization Conference (PEOCO), 2010, IEEE
,
2010
, pp.
430
434
.
79.
K.
Agbossou
,
M.
Kolhe
,
J.
Hamelin
, and
T. K.
Bose
, “
Performance of a stand-alone renewable energy system based on energy storage as hydrogen
,”
IEEE Trans. Energy Convers.
19
(
3
),
633
640
(
2004
).
80.
L. C. G.
Valente
and
S. C.
Aníbal de Almeida
, “
Economic analysis of a diesel/photovoltaic hybrid system for decentralized power generation in northern Brazil
,”
Energy
23
(
4
),
317
323
(
1998
).
81.
HOMER, see http://www.homerenergy.com/ for HOMER support.
83.
PVSOL, see http://www.valentin.de/en/downloads/products for PVSOL support.
84.
RAPSIM, see http://about.murdoch.edu.au/synergy/9803/rapsim.html for RAPSIM applications.
85.
TRNSYS, see http://sel.me.wisc.edu/trnsys/ for applications and scope of TRANSYS.
86.
P.
Kruangpradit
and
W.
Tayati
, “
Hybrid renewable energy system development in Thailand
,”
Renewable Energy
8
,
514
517
(
1996
).
87.
R.
Muhida
,
A.
Mostavan
,
W.
Sujatmiko
,
M.
Park
, and
K.
Matsuura
, “
The 10 years operation of a PV-micro-hydro hybrid system in Taratak, Indonesia
,”
Sol. Energy Mater. Sol. Cells
67
(
1–4
),
621
627
(
2001
).
88.
J.
Kenfack
,
F. P.
Neirac
,
T. T.
Tatietse
,
D.
Mayer
,
M.
Fogue
, and
A.
Lejeune
, “
Microhydro-PV-hybrid system: Sizing a small hydro-PV-hybrid system for rural electrification in developing countries
,”
Renewable Energy
34
(
10
),
2259
2263
(
2009
).
89.
S.
Meshram
,
G.
Agnihotri
, and
S.
Gupta
, “
Modeling of grid connected DC linked PV/hydro hybrid system
,”
Electr. Electron. Eng. (ELELIJ)
2
(
3
),
13
27
(
2013
).
90.
S.
Meshram
,
G.
Agnihotri
, and
S.
Gupta
, “
Performance analysis of grid integrated hydro and solar based hybrid systems,”
Adv. Power Electron.
2013
,
1
7
.
91.
S.
Ashok
, “
Optimised model for community-based hybrid energy system
,”
Renewable Energy
32
(
7
),
1155
1164
(
2007
).
92.
A.
Beluco
,
P. K.
Souza
, and
A.
Krenzinger
, “
PV hydro hybrid systems
,”
IEEE Lat. Am. Trans.
6
(
7
),
626
631
(
2008
).
93.
K.
Kusakana
,
J. L.
Munda
, and
A. A.
Jimoh
, “
Feasibility study of a hybrid PV-micro hydro system for rural electrification
,” in
IEEE AFRICON, 2009, AFRICON'09, IEEE
,
2009
, pp.
1
5
.
94.
S. G. J.
Ehnberg
and
M. H. J.
Bollen
, “
Reliability of a small power system using solar power and hydro
,”
Electr. Power Syst. Res.
74
(
1
),
119
127
(
2005
).
95.
P.
Kauranen
,
P.
Lund
, and
J.
Vanhanen
, “
Development of a self-sufficient solar-hydrogen energy system
,”
Int. J. Hydrogen Energy
19
(
1
),
99
106
(
1994
).
96.
E. M.
Nfah
and
J. M.
Ngundam
, “
Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon
,”
Renewable Energy
34
(
6
),
1445
1450
(
2009
).
97.
P. K.
Goel
,
B.
Singh
,
S. S.
Murthy
, and
N.
Kishore
, “Isolated wind–hydro hybrid system using cage generators and battery storage,”
IEEE Transactions on Industrial Electronics
58
(
4
),
1141
1153
(
2011
).
98.
S. C.
Tripathy
,
M.
Kalantar
, and
M.
Balasubramanian
, “
Dynamics and stability of a hybrid wind-diesel power system
,”
Energy Convers. Manage.
33
(
12
),
1063
1072
(
1992
).
99.
R.
Dhanalakshmi
and
S.
Palaniswami
, “
ANFIS based neuro-fuzzy controller in lfc of wind- micro hydro diesel hybrid power system
,”
IJCA J.
42
(
6
),
28
35
(
2012
).
100.
F.
Vieira
and
M. H.
Ramos
, “
Optimization of operational planning for wind/hydro hybrid water supply systems
,”
Renewable Energy
34
(3),
928
936
(
2009
).
101.
T. S.
Bhatti
,
A. A. F.
Al-Ademi
, and
N. K.
Bansal
, “
Load-frequency control of isolated wind-diesel microhydro hybrid power systems (WDMHPS)
,”
Energy
22
(
5
),
461
470
(
1997
).
102.
K.
Kumar
and
M. A.
Ansari
, “
Design and development of hybrid wind-hydro power generation system
,”
IEEE International Conference on Energy Efficient Technologies for Sustainability (ICEETS)
, April
2013
, pp.
406
410
.
103.
E. D.
Castronuovo
and
J. A. P.
Lopes
, “
Bounding active power generation of a wind-hydro power plant
,”
IEEE International Conference on Probabilistic Methods Applied to Power Systems
,
2004
, pp.
705
710
.
104.
F.
Leach
,
R. A.
Munteanu
,
I.
Vădan
, and
D.
Căpăţână
, “
Didactic platform for the study of hybrid wind-hydro power plants
,”
IEEE ELECTROMOTION 2009 – EPE Chapter ‘Electric Drives' Joint Symposium
, July
2009
, pp.
1
3
.
105.
G. C.
Bakos
, “
Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production
,”
Appl. Energy
72
(
3–4
),
599
608
(
2002
).
106.
P. K.
Goel
,
B.
Singh
, and
S. S.
Murthy
, “
Autonomous hybrid system using SCIG for hydro power generation and variable speed PMSG for wind power generation
,”
IEEE International Conference on Power Electronics and Drive Systems, PEDS
2009
, pp.
55
60
.
107.
M.
Nasser
,
S.
Breban
,
V.
Courtecuisse
,
A.
Vergnol
,
B.
Robyns
, and
M. M.
Radulescu
, “
Experimental results of a hybrid wind / hydropower system connected to isolated loads
,”
IEEE 13th Power Electronics and Motion Control Conference, 2008, EPE-PEMC
2008
, pp.
1896
1903
.
108.
R.
Karki
,
S.
Member
,
P.
Hu
,
R.
Billinton
, and
L.
Fellow
, “
Reliability evaluation considering wind and hydro power coordination
,”
IEEE Trans. Power Syst.
25
(
2
),
685
693
(
2010
).
109.
A. A.
Sánchez de la Nieta
,
J.
Contreras
, and
J. I.
Muñoz
, “
Optimal coordinated wind-hydro bidding strategies in day-ahead markets
,”
IEEE Trans. Power Syst.
28
(
2
),
798
809
(
2013
).
110.
W.
Wangdee
,
W.
Li
, and
R.
Billinton
, “
Coordinating wind and hydro generation to increase the effective load carrying capability
,”
IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems
, Jun
2010
, pp.
337
342
.
111.
K.
Sirasan
and
S. Y.
Kamdi
, “
Solar wind hydro hybrid energy system simulation
,”
Int. J. Soft Comput. Eng.
2
(
6
),
500
503
(
2013
), pdf available at http://www.ijsce.org/attachments/File/v2i6/F1250112612.pdf.
112.
S. M.
Islam
, “
Increasing wind energy penetration level using pumped hydro storage in island micro-grid system,”
Int. J. Energy Environ. Eng.
2012
,
1
12
.
113.
C. S.
Sreekala
and
A.
Mathew
,
“Voltage and frequency control of wind hydro hybrid system in isolated locations using cage generators
,”
2013 Int. Mutli-Conference Autom. Comput. Commun. Control Compress. Sens., Mar.
2013
, pp.
132
137
.
114.
P. K.
Goel
,
B.
Singh
,
S. S.
Murthy
, and
N.
Kishore
, “
Autonomous hybrid system using PMSGs for hydro and wind power generation
,”
2009 35th Annu. Conf. IEEE Ind. Electron., Nov.
2009
, pp.
255
260
.
115.
P. D.
Nguyen Ngoc
,
T. T. H.
Pham
,
S.
Bacha
, and
D.
Roye
,
“Optimal operation for a wind-hydro power plant to participate to ancillary services
,”
2009 IEEE International Conference on Industrial Technology
, Feb.
2009
, pp.
1
5
.
116.
G.
Bekele
and
G.
Tadesse
, “
Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia
,”
Appl. Energy
97
,
5
15
(
2012
).
117.
M. M.
Atiqur Rahman
,
A. T.
Al Awami
, and
A. H. M. A.
Rahim
, “
Hydro-PV-wind-battery-diesel based stand-alone hybrid power system
,” in
2014 International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), IEEE
,
2014
, pp.
1
6
.
118.
D. K.
Lal
,
B. B.
Dash
, and
A. K.
Akella
, “
Optimization of PV/wind/micro-hydro/diesel hybrid power system in HOMER for the study area
,”
Int. J. Electr. Eng. Informatics
3
(
3
),
307
325
(
2011
).
119.
A. N.
Celik
, “
Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems
,”
Energy Convers. Manage.
43
(
18
),
2453
2468
(
2002
).
120.
M. N.
Ambia
,
M. K.
Islam
,
M. A.
Shoeb
,
M. N. I.
Maruf
, and
A. S. M.
Mohsin
, “
An Analysis & Design on Micro Generation of A Domestic Solar-Wind Hybrid Energy System for Rural & Remote Areas - Perspective Bangladesh Solar Power Wind Power
,”
IEEE 2nd International Conference on Mechanical and Electronics Engineering
(ICMEE
2010
), Vol.
2
, pp.
107
110
.
121.
J.
Kasera
,
A.
Chaplot
, and
J. K.
Maherchandani
, “
Modeling and simulation of wind-pv hybrid power system using MATLAB/Simulink
,”
IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS)
,
2012
, pp.
1
4
.
122.
I.
Valencia
,
E.
Peñalvo
,
D.
Carbini
, and
A. P.
Navarro
, “
Optimization of renewable sources in a hybrid systems operation
,”
13th Spanish Portuguese Conference on Electrical Engineering (13CHLIE)
, pp.
1
6
.
123.
M. T.
Samarakou
and
J. C.
Hennet
, “
Simulation of a combined wind and solar power plant
,”
Int. J. Energy Res.
10
(
1–10
)
(1986
).
124.
J.
Song
,
J. C.
Lee
,
J. H.
Yun
,
S. K.
Kim
,
H. W.
Kim
,
K. H.
Yoon
,
M. I.
Kim
,
J. H.
Hwang
,
S. H.
Lee
,
N.
Enebish
, and
D.
Agchbayar
, “
Performance evaluation of PV-wind hybrid power generation system at Gobi-desert area
,”
Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference
,
2005
, pp.
1683
1686
.
125.
S. C.
Gupta
,
D. Y.
Kumar
, and
D. G.
Agnihotri
, “
Optimal sizing of solar-wind hybrid system
,”
LET-UK International Conference on Information and Communication Technology in Electrical Sciences
(ICTES
2007
), pp.
282
287
.
126.
M.
Abdel-Salam
,
A.
Ahmed
,
H.
Ziedan
,
K.
Sayed
,
M.
Amery
, and
M.
Swify
, “
A solar-wind hybrid power system for irrigation in Toshka area
,”
2011 IEEE Jordan Conf. Appl. Electr. Eng. Comput. Technol.
,
2011
,
1
6
.
127.
M. B.
Shadmand
,
M.
Pasupuleti
, and
R.
Balog
, “
Photovoltaic-wind hybrid system with battery back-up, optimized for apartment complexes and other community living environments
,”
2011 IEEE Energy Conversion Congress and Exposition
(ECCE,
2011
), Vol.
3
, pp.
3626
3632
.
128.
P.
Dalwadi
,
V.
Shrinet
,
C. R.
Mehta
, and
P.
Shah
, “
Optimization of solar-wind hybrid system for distributed generation
,”
2011 Nirma Univ. Int. Conf. Eng.
, Dec.
2011
, pp.
1
4
.
129.
P.
Kolhe
,
B.
Bitzer
,
S. P.
Chowdhury
, and
S.
Chowdhury
, “
Hybrid power system model and TELELAB
,”
2012 47th Int. Univ. Power Eng. Conf.
, Sep.
2012
, pp.
1
5
.
130.
J. B.
Garrison
and
M. E.
Webber
, “
An integrated energy storage scheme for a dispatchable solar and wind powered energy system
,”
J. Renew. Sustain. Energy
3
(
4
),
043101
(
2011
).
131.
Z.
Dongmei
,
Z.
Nan
, and
L.
Yanhua
, “
Micro-grid connected/islanding operation based on wind and PV hybrid power system,”
IEEE PES Innov. Smart Grid Technol.
2012
,
1
6
.
132.
U.
Fesli
,
R.
Bayir
, and
M.
Özer
, “
Design and implementation of a domestic solar-wind hybrid energy system
,”
IEEE International Conference on Electrical and Electronics Engineering, 2009, ELECO
(
2009
), pp.
29
33
.
133.
S. C.
Tripathy
,
M.
Kalantar
, and
R.
Balasubramanian
, “
Stability simulation and parameter optimization of a hybrid wind-diesel power generation system
,”
Int. J. Energy Res.
16
(
1
),
31
42
(
1992
).
134.
S.
Kim
,
C.
Kim
,
J.
Song
,
G.
Yu
, and
Y.
Jung
, “
Load sharing operation of a 14kw photovoltaic/wind hybrid power system
,”
IEEE 26th PVSC; Sept. 30–0ct. 3
,
1997
, pp.
1325
1328
.
135.
D.
Ipsakis
,
S.
Voutetakis
,
P.
Seferlis
,
F.
Stergiopoulos
, and
C.
Elmasides
, “
Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage
,”
Int. J. Hydrogen Energy
34
(
16
),
7081
7095
(
2009
).
136.
A. A.
Al-Shamma'a
and
K. E.
Addoweesh
, “
Techno-economic optimization of hybrid power system using genetic algorithm
,”
Int. J. Energy Res.
38
,
1608
1623
(
2014
).
137.
A. R.
Shiroudi
,
R.
Rashidi
,
G. B.
Gharehpetian
,
S. A.
Mousavifar
, and
A.
Akbari Foroud
, “
Case study: Simulation and optimization of photovoltaic-wind-battery hybrid energy system in Taleghan-Iran using homer software
,”
J. Renewable Sustainable Energy
4
(
5
),
053111
(
2012
).
138.
G.
Beyene
and
B.
Palm
, “
Feasibility study of solar-wind based standalone hybrid system for application in ethiopia
,”
World Renewable Energy Congress
2011
,
Linkoping, Sweden
.
139.
U.
Sureshkumar
,
P. S.
Manoharan
, and
A. P. S.
Ramalakshmi
, “
Economic cost analysis of hybrid renewable energy system using HOMER
,” in
2012 International Conference on Advances in Engineering, Science and Management (ICAESM), IEEE
,
2012
, pp.
94
99
.
140.
P.
Frebourg
,
N.
Ketjoy
,
S.
Nathakaranakul
,
A.
Pongtornkulpanich
,
W.
Rakwichian
, and
P.
Laodee
, “
Feasibility study of a small-scale grid-connected solar parabolic biomass hybrid power plant in thailand
,” available at: e-nett.sut.ac.th/download/RE/RE17.pdf.
141.
F.
Fiedler
,
S.
Nordlander
,
T.
Persson
, and
C.
Bales
, “
Thermal performance of combined solar and pellet heating systems
,”
Renew. Energy
31
(
1
),
73
88
(
2006
).
142.
S.
Kibaara
and
C.
Town
, “
A thermal analysis of parabolic trough csp and biomass hybrid power system
,”
2012 IEEE PES Transmission and Distribution Conference and Exposition (T&D)
,
2012
, pp.
1
6
.
143.
T.
Chou
,
Z.
Shih
,
H.
Hong
,
C.
Han
, and
K.
Chiang
, “
Investigation of the Thermal Performance of High-Concentration Photovoltaic Solar Cell Package,”
IEEE Int. Conf. Electron Mater. Packag.
2007
,
1
6
.
144.
J. D.
Nixon
,
P. K.
Dey
, and
P. A.
Davies
, “
The feasibility of hybrid solar-biomass power plants in India
,”
Energy
46
(
1
),
541
554
(
2012
).
145.
W. S.
Ho
,
H.
Hashim
, and
J. S.
Lim
, “
Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)
,”
Renew. Energy
69
,
190
201
(
2014
).
146.
N. D.
Kaushika
,
A.
Mishra
, and
M. N.
Chakravarty
, “
Thermal analysis of solar biomass hybrid co-generation plants
,”
Int. J. Sustain. Energy
24
(
4
),
175
186
(
2005
).
147.
M.
Bansal
,
D. K.
Khatod
, and
R. P.
Saini
, “
Modeling and optimization of integrated renewable energy system for a rural site
,”
2014 Int. Conf. Reliab. Optim. Inf. Technol., Feb.
2014
, pp.
25
28
.
148.
“Neha Energie, Solar & Biomass Hybrid,” available at: http://www.nepad.org/system/files/Neha%20Energie.pdf.
149.
G.
Liu
,
M. G.
Rasul
,
M. T. O.
Amanullah
, and
M. M. K.
Khan
, “Feasibility study of stand-alone pv-wind-biomass hybrid energy system in australia
,” in
2011 Asia-Pacific Power Energy Eng. Conf.
, Mar.
2011
, pp.
1
6
.
150.
T.
Srinivas
and
B. V.
Reddy
, “
Hybrid solar–biomass power plant without energy storage
,”
Case Stud. Therm. Eng.
2
,
75
81
(
2014
).
151.
B.
Prasartkaew
and
S.
Kumar
, “
Experimental study on the performance of a solar-biomass hybrid air-conditioning system
,”
Renewable Energy
57
,
86
93
(
2013
).
152.
K.
Janardhan
,
T.
Srivastava
,
G.
Satpathy
, and
K.
Sudhakar
, “
Hybrid solar PV and biomass system for rural electrification
,”
Int. J. Chem. Tech. Res. ICGSEE
5
(
2
),
802
810
(
2013
), pdf available at http://sphinxsai.com/2013/conf/PDFS%20ICGSEE%202013/CT=39(802-810)ICGSEE.pdf.
153.
M.
Jradi
and
S.
Riffat
, “
Modelling and testing of a hybrid solar-biomass ORC-based micro-CHP system
,”
Int. J. Energy Res.
38
,
1039
1052
(
2014
).
154.
Balamurugan
,
P.
,
S.
Kumaravel
, and
S.
Ashok
, “
Optimal operation of biomass gasifier based hybrid energy system
,”
ISRN Renewable Energy
2011
.
155.
A.
Pérez-Navarro
,
D.
Alfonso
,
C.
Álvarez
,
F.
Ibáñez
,
C.
Sánchez
, and
I.
Segura
, “
Hybrid biomass-wind power plant for reliable energy generation
,”
Renewable Energy
35
(
7
),
1436
1443
(
2010
).
156.
I.
Segura
,
a.
Pereznavarro
,
C.
Sanchez
,
F.
Ibanez
,
J.
Paya
, and
E.
Bernal
, “
Technical requirements for economical viability of electricity generation in stabilized wind parks
,”
Int. J. Hydrogen Energy
32
(
16
),
3811
3819
(
2007
).
157.
N.
Vani
and
V.
Khare
, “
Rural electrification system based on hybrid energy system model optimization using HOMER
,”
Canadian J. Basic Appl. Sci.
1
(
1
),
19
25
(
2013
), pdf available at http://www.cjbas.com/archive/CJBAS-13-01-01-03.pdf.
158.
S.
Yılmaz
and
H.
Selim
, “
A review on the methods for biomass to energy conversion systems design
,”
Renew. Sustain. Energy Rev
25
,
420
430
(
2013
).
159.
A.
Raheem
,
M.
Hassan
, and
R.
Shakoor
, “
Pecuniary optimization of biomass/wind hybrid renewable system
,” in
Proceedings of the 1st International e-Conference on Energies, 14-31 March
2014
, Vol. 1, pp.
1
10
.
160.
P.
Balamurugan
,
S.
Ashok
, and
T. L.
Jose
, “
Optimal operation of biomass/wind/PV hybrid energy system for rural areas
,”
Int. J. Green Energy
6
(
1
),
104
116
(
2009
).
161.
Z.
Jiang
and
X.
Yu
, “
Hybrid DC- and AC-linked microgrids: Towards integration of distributed energy resources
,”
2008 IEEE Energy 2030 Conference, Nov.
2008
, pp.
1
8
.
162.
H.
Dienhart
and
A.
Siegel
, “
Hydrogen storage in isolated electrical energy systems with photovoltaic and wind energy
,”
Int. J. Hydrogen Energy
19
(
1
),
61
66
(
1994
).
163.
K.
Ro
and
S.
Rahman
, “
Two loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant
,”
IEEE Trans. Energy Convers.
13
(
3
),
276
281
(
1998
).
164.
H.-C.
Chen
,
P.-H.
Chen
,
L.-Y.
Chang
, and
W.-X.
Bai
, “
Stand-alone hybrid generation system based on renewable energy
,”
Int. J. Environ. Sci. Dev.
4
(
5
),
514
520
(
2013
).
165.
R. K.
Moziraji
,
I. A.
Joneidi
, and
M.
Bagheri
, “
A dynamic model for photovoltaic (PV)/fuel cell (FC) hybrid energy system
,”
J. Basic Appl. Sci. Res.
3
(
2
),
811
819
(
2013
).
166.
J.
Turner
,
G.
Sverdrup
,
M. K.
Mann
,
P.-C.
Maness
,
B.
Kroposki
,
M.
Ghirardi
,
R. J.
Evans
, and
D.
Blake
, “
Renewable hydrogen production
,”
Int. J. Energy Res.
32
,
379
407
(
2008
).
167.
W.-J.
Yang
,
C. H.
Kuo
, and
O.
Aydin
, “
A hybrid power generation system: solar-driven Rankine engine–hydrogen storage
,”
Int. J. Energy Res.
25
,
1107
1125
(
2001
).
168.
G.
Bruni
,
S.
Cordiner
,
M.
Galeotti
,
V.
Mulone
,
M.
Nobile
, and
V.
Rocco
, “
Control strategy influence on the efficiency of a hybrid photovoltaic-battery-fuel cell system distributed generation system for domestic applications
,”
Energy Procedia
45
,
237
246
(
2014
).
169.
R.
Dufo-López
,
J. L.
Bernal-Agustín
, and
J.
Contreras
, “
Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage
,”
Renewable Energy
32
(
7
),
1102
1126
(
2007
).
170.
K.
Rajashekara
, “
Hybrid fuel-cell strategies for clean power generation
,”
IEEE Trans. Ind. Appl.
41
(
3
),
682
689
(
2005
).
171.
J. H.
Scott
, “
The development of fuel cell technology for electric power generation: from nasa's manned space program to the ‘hydrogen economy’
,”
Proc. IEEE
94
(
10
),
1815
1825
(
2006
).
172.
T. F.
El-Shatter
,
M. N.
Eskandar
, and
M. T.
El-Hagry
, “
Hybrid PV/fuel cell system design and simulation
,”
Renew. Energy
27
(
3
),
479
485
(
2002
).
173.
T. F.
El-Shatter
,
M. N.
Eskander
, and
M. T.
El-Hagry
, “
Energy flow and management of a hybrid wind/PV/fuel cell generation system
,”
Energy Convers. Manage.
47
(
9–10
),
1264
1280
(
2006
).
174.
G.
Bayrak
and
M.
Cebeci
, “
Grid connected fuel cell and PV hybrid power generating system design with Matlab Simulink
,”
Int. J. Hydrogen Energy
39
(
16
),
8803
8812
(
2014
).
175.
M.
Tanrioven
, “
Reliability and cost–benefits of adding alternate power sources to an independent micro-grid community
,”
J. Power Sources
150
(
378
),
136
149
(
2005
).
176.
D. B.
Nelson
,
M. H.
Nehrir
, and
C.
Wang
, “
Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems
,”
Renewable Energy
31
(
10
),
1641
1656
(
2006
).
177.
P.
Ghosh
,
B.
Emonts
,
H.
Janßen
,
J.
Mergel
, and
D.
Stolten
, “
Ten years of operational experience with a hydrogen-based renewable energy supply system
,”
Sol. Energy
75
(
6
),
469
478
(
2003
).
178.
S.
Obara
,
O.
Kawae
,
M.
Kawai
, and
Y.
Morizane
, “
A study of the installed capacity and electricity quality of a fuel cell-independent microgrid that uses locally produced energy for local consumption
,”
Int. J. Energy Res.
37
,
1764
1783
(
2013
).
179.
E.
Cetin
,
A.
Yilanci
,
H. K.
Ozturk
,
M.
Colak
,
I.
Kasikci
, and
S.
Iplikci
, “
A micro-DC power distribution system for a residential application energized by photovoltaic–wind/fuel cell hybrid energy systems
,”
Energy Build.
42
(
8
),
1344
1352
(
2010
).
180.
L.
Hongkai
,
X.
Chenghong
,
S.
Jinghui
, and
Y.
Yuexi
, “
Green power generation technology for distributed power supply
,”
China Int. Conf. Electr. Distrib.
2008
,
1
4
.
181.
O. C.
Onar
,
M.
Uzunoglu
, and
M. S.
Alam
, “
Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system
,”
J. Power Sources
161
(
1
),
707
722
(
2006
).
182.
E.
Muljadi
and
C. P.
Butterfield
, “
Pitch-controlled variable-speed wind turbine generation
,”
IEEE Trans. Ind. Appl.
37
(
1
),
240
246
(
2001
).
183.
S. W.
Mohod
and
M. V.
Aware
, “
Micro wind power generator with battery energy storage for critical load
,”
IEEE Syst. J.
6
(
1
),
118
125
(
2012
).
184.
M.-S.
Lu
,
C.-L.
Chang
,
W.-J.
Lee
, and
L.
Wang
, “
Combining the wind power generation system with energy storage equipments,”
IEEE Ind. Appl. Soc. Annu. Meet.
2008
,
1
6
.
185.
J. I. S.
Martín
,
I.
Zamora
,
J. J. S.
Martín
,
V.
Aperribay
, and
P.
Eguía
, “
Hybrid Technologies: Fuel Cells and Renewable Energies
,” available at: http://www.icrepq.com/icrepq07/304-san_martin.pdf.
186.
I. P.
Panapakidis
,
D. N.
Sarafianos
, and
M. C.
Alexiadis
, “
Comparative analysis of different grid-independent hybrid power generation systems for a residential load
,”
Renewable Sustainable Energy Rev.
16
(
1
),
551
563
(
2012
).
187.
A. L.
Dicks
,
R. G.
Fellows
,
C.
Martin Mescal
, and
C.
Seymour
, “
A study of SOFC–PEM hybrid systems
,”
J. Power Sources
86
(
1–2
),
501
506
(
2000
).
188.
E.
Mbarek
and
J.
Belhadj
, “
Photovoltaic wind hybrid system integrating a permanent exchange membrane fuel cell (PEMFC)
,”
IEEE 2009 6th International Multi-Conference on Systems, Signals and Devices
,
2009
.
189.
A.
Mills
and
S.
Al-Hallaj
, “
Simulation of hydrogen-based hybrid systems using Hybrid2
,”
Int. J. Hydrogen Energy
29
(
10
),
991
999
(
2004
).
190.
W.-J.
Yang
and
O.
Aydin
, “
Wind energy–hydrogen storage hybrid power generation
,”
Int. J. Energy Res.
25
,
449
463
(
2001
).
191.
M. J.
Khan
and
M. T.
Iqbal
, “
Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland
,”
Renewable Energy
30
(
6
)
835
854
(
2005
).
192.
A.
Gupta
,
R. P.
Saini
, and
M. P.
Sharma
, “
Computerized modelling of hybrid energy system—Part I: Problem formulation and model development
,”
IEEE 5th International Conference on Electrical and Computer Engineering (ICECE 2008)
, December
2008
, pp.
7
12
.
193.
R. B.
Hiremath
,
S.
Shikha
, and
N. H.
Ravindranath
, “
Decentralized energy planning; modeling and application—A review
,”
Renewable Sustainable Energy Rev.
11
(
5
),
729
752
(
2007
).
194.
C. D.
Barley
and
C. B.
Winn
, “
Optimal dispatch strategy in remote hybrid power systems
,”
Sol. Energy
58
(
4
),
165
179
(
1996
).
195.
A.
Arivalagan
and
B. G.
Raghavendra
, “
Integrated energy optimization model for a cogeneration based energy supply system in the process industry
,”
Int. J. Electr. Power Energy Syst.
17
(
4
),
227
233
(
1995
).
196.
A.
Gupta
,
R. P.
Saini
, and
M. P.
Sharma
, “
Hybrid energy system sizing incorporating battery storage: An analysis via simulation calculation
,”
IEEE Third International Conference on Power Systems, 2009 (ICPS '09)
,
2009
, pp.
1
6
.
197.
R.
Ramakumar
,
I.
Abouzahr
, and
K.
Ashenayi
, “
A knowledge-based approach to the design of integrated renewable energy systems
,”
IEEE Trans. Energy Convers.
7
(
4
),
648
659
(
1992
).
198.
A. S.
Sánchez
,
E. A.
Torres
, and
R. A.
Kalid
, “
Renewable energy generation for the rural electrification of isolated communities in the Amazon Region
,”
Renewable Sustainable Energy Rev.
49
,
278
290
(
2015
).
199.
M.
Little
,
M.
Thomson
, and
D.
Infield
, “
Electrical integration of renewable energy into stand-alone power supplies incorporating hydrogen storage
,”
Int. J. Hydrogen Energy
32
(
10–11
),
1582
1588
(
2007
).
200.
O. C.
Onar
,
M.
Uzunoglu
, and
M. S.
Alam
, “
Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system
,”
J. Power Sources
185
(
2
),
1273
1283
(
2008
).
201.
C.
Wang
and
M. H.
Nehrir
, “
Power management of a stand-alone wind/photovoltaic/fuel cell energy system
,”
IEEE Trans. Energy Convers.
23
(
3
),
957
967
(
2008
).
202.
M. J.
Khan
and
M. T.
Iqbal
, “
Analysis of a small wind-hydrogen stand-alone hybrid energy system
,”
Appl. Energy
86
(
11
),
2429
2442
(
2009
).
203.
F.
Mostofi
and
H.
Shayeghi
, “
Feasibility and optimal reliable design of renewable hybrid energy system for rural electrification in iran
,”
Int. J. Renewable Energy Res.
2
(
4
),
574
582
(
2012
).
204.
N.
Gyawali
and
Y.
Ohsawa
, “
Integrating fuel cell/electrolyzer/ultracapacitor system into a stand-alone microhydro plant
,”
IEEE Trans. Energy Convers.
25
(
4
),
1092
1101
(
2010
).
205.
P.
Meisen
and
T.
Hammons
, “
Harnessing the untapped energy potential of the oceans: tidal, wave, currents and otec
,”
IEEE 2005 Power Engineering Society General Meeting, San Francisco, 12–16 June
2005
, pp.
1
2
.
206.
G.
Caraiman
,
C.
Nichita
,
V.
Mînzu
,
B.
Dakyo
, and
C. H.
Jo
, “
Study of a real time emulator for marine current energy conversion
,”
IEEE XIX International Conference on Electrical Machines—ICEM 2010
, Rome,
2010
.
207.
M.
Junginger
,
A.
Faaij
, and
W. C.
Turkenburg
, “
Cost reduction prospects for offshore wind farms
,”
Wind Eng.
28
(
1
),
97
118
(
2004
).
208.
K. W.
Guo
, “
Green nanotechnology of trends in future energy: A review
,”
Int. J. Energy Res.
36
,
1
17
(
2012
).
209.
G.
Caraiman
,
C.
Nichita
,
V.
Mînzu
,
B.
Dakyio
, and
C. H.
Jo
, “
Concept study of offshore wind and tidal hybrid conversion based on real time simulation
,”
EA4EPQ International Conference on Renewable Energies and Power Quality (ICREPQ’11), Las Palmas de Gran Canaria (Spain)
, 13th to 15th April,
2010
.
210.
S. M.
Mousavi Gazafroodi
, “
An autonomous hybrid energy system of wind/tidal/microturbine/battery storage
,”
Int. J. Electr. Power Energy Syst.
43
(
1
),
1144
1154
(
2012
).
211.
Y.
Da
and
A.
Khaligh
, “
Hybrid offshore wind and tidal turbine energy harvesting system with independently controlled rectifiers
,”
2009 35th Annual Conference IEEE Industrial Electronics, Nov.
2009
, pp.
4577
4582
.
212.
S.
Pierre
,
C.
Nichita
,
J.
Brossard
, and
B.
Dakyo
, “
Overview and analysis of different offshore wind-tidal hybrid systems as starting points for a real time simulator development
,”
XIII Spanish Portuguese Conference on Electrical Engineering (XIIICHLIE)
, July 3–5,
2013
, Valencia, Spain. Paper No. 202.
213.
T.
Aboul-Seoud
and
A. M.
Sharaf
, “
A dynamic voltage regulator compensation scheme for a grid connected village electricity hybrid wind/tidal energy conversion scheme
,”
2009 IEEE Electrical Power Energy Conference, Oct.
2009
, pp.
1
6
.
214.
M. L.
Rahman
,
S.
Oka
, and
Y.
Shirai
, “
Hybrid power generation system using offshore-wind turbine and tidal turbine for power fluctuation compensation (HOT-PC)
,”
IEEE Trans. Sustainable Energy
1
(
2
),
92
98
(
2010
).
215.
T.
Aboul-Seoud
and
A. M.
Sharaf
, “
Utilization of the modulated power filter compensator scheme for a grid connected rural hybrid wind/tidal energy conversion scheme
,”
2010 IEEE Electr. Power Energy Conf., Aug.
2010
, pp.
1
6
.
216.
L.
Wang
,
C.-N.
Li
,
Y.-T.
Chen
,
Y.-T.
Kao
, and
S.-W.
Wang
, “
Analysis of a hybrid offshore wind and tidal farm connected to a power grid using a flywheel energy storage system
,”
2011 IEEE Power Energy Soc. Gen. Meet., Jul.
2011
, pp.
1
8
.
217.
M. L.
Rahman
and
S. O. Y.
Shirai
, “
Hybrid offshore-wind and tidal turbine power system for complement-the-fluctuation(HOTCF)
,” available at: http://proceedings.ewea.org/ewec2010/allfiles2/113_EWEC2010presentation.pdf.
218.
M. L.
Rahman
and
Y.
Shirai
, “
DC connected hybrid offshore-wind and tidal turbine generation system
,”
Zero-Carbon Energy Kyoto 2009, Green Energy and Technology
, pp.
141
150
.
219.
M. L.
Rahman
and
Y.
Shirai
, “
Hybrid offshore-wind and tidal turbine (hott) energy conversion II (6-pulse GTO rectifier DC connection and inverter)
,”
IEEE International Conference on Sustainable Energy Technologies, 24–27 Nov. 2008
(ICSET
2008
), pp.
650
655
.
220.
M. L.
Rahman
and
Y.
Shirai
, “
Design and analysis of a prototype HOTT generation system
,”
BUP J.
1
(
1
),
111
129
(
2012
), pdf available at http://www.bup.edu.bd/journal/111-129.pdf.
222.
Power and Energy circuits available at: http://ieee-cas.org/community/technical-committees/pecas.
223.
A.
Patil
,
V.
Patil
,
D. W.
Shin
,
J.-W.
Choi
,
D.-S.
Paik
, and
Seok-Jin
Yoon
, “
Issue and challenges facing rechargeable thin film lithium batteries
,”
Mater. Res. Bull.
43
(
8
),
1913
1942
(
2008
).
224.
J. L. C.
Rowsell
and
O. M.
Yaghi
, “
Strategies for hydrogen storage in metal–organic frameworks
,”
Angew. Chem. Int. Ed.
44
(
30
),
4670
4679
(
2005
).
225.
B. W.
Kennedy
, “
Integrating wind power: Transmission and operational impacts
,”
Refocus
5
(
1
),
36
37
(
2004
).
You do not currently have access to this content.