Integrating renewable energy into standalone Internal Combustion Generator (ICG) systems is an economical and eco-friendly option. However, previous studies demonstrate the difficulties in replacing the ICGs completely by using Solar PV (SPV) and wind energy with a dispatchable energy storage. This makes it interesting to analyze the limitations in integrating the SPV and wind energy into Hybrid Energy System. A multi criterion analysis is presented in this study, considering Levelized Energy Cost, Loss of Load Probability, and Fuel Consumption varying the scale of the ICG capacity to attain aforementioned objective. Changes in the system design with the integration of the SPV and wind energy were analyzed using Pareto multi-objective optimization considering Renewable Energy Capacity as an objective function. Sensitivity of the ICG capacity on optimum Renewable Energy Technology, role of the ICG in improving system reliability, etc., were subsequently analyzed. The results depict that the ICG capacity notably influence to the balance between wind and SPV capacity. An increase in the ICG capacity does increase the contribution from dispatchable energy source in most of the scenarios. Furthermore, it facilitates to amalgamate highly fluctuating renewable energy sources at a relatively low cost. This makes it inevitable to replace ICG with non-dispatchable renewable energy sources and energy storage.

1.
C.
Milan
,
C.
Bojesen
, and
M. P.
Nielsen
, “
A cost optimization model for 100% renewable residential energy supply systems
,”
Energy
48
,
118
127
(
2012
).
2.
G.
Xydis
, “
Comparison study between a renewable energy supply system and a supergrid for achieving 100% from renewable energy sources in Islands
,”
Int. J. Electr. Power Energy Syst.
46
,
198
210
(
2013
).
3.
H.
Lund
and
B. V.
Mathiesen
, “
Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050
,”
Energy
34
,
524
531
(
2009
).
4.
B.
Ćosić
,
G.
Krajačić
, and
N. A.
Duić
, “
100% renewable energy system in the year 2050: The case of Macedonia
,”
Energy
48
,
80
87
(
2012
).
5.
A. C.
Marques
and
J. A.
Fuinhas
, “
Is renewable energy effective in promoting growth?
,”
Energy Policy
46
,
434
442
(
2012
).
6.
D. J.
Arent
,
A.
Wise
, and
R.
Gelman
, “
The status and prospects of renewable energy for combating global warming
,”
Energy Econ.
33
,
584
593
(
2011
).
7.
B.
Tarroja
,
F.
Mueller
,
J. D.
Eichman
, and
S.
Samuelsen
, “
Metrics for evaluating the impacts of intermittent renewable generation on utility load-balancing
,”
Energy
42
,
546
562
(
2012
).
8.
R.
Dufo-López
,
J. L.
Bernal-Agustín
,
J. M.
Yusta-Loyo
,
J. A.
Domínguez-Navarro
,
I. J.
Ramírez-Rosado
,
J.
Lujano
 et al., “
Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage
,”
Appl. Energy
88
,
4033
4041
(
2011
).
9.
A. T. D.
Perera
,
D. M. I. J.
Wickremasinghe
,
D. V. S.
Mahindarathna
,
R. A.
Attalage
,
K. K. C. K.
Perera
, and
E. M.
Bartholameuz
, “
Sensitivity of internal combustion generator capacity in standalone hybrid energy systems
,”
Energy
39
,
403
411
(
2012
).
10.
K.
Schaber
,
F.
Steinke
, and
T.
Hamacher
, “
Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?
,”
Energy Policy
43
,
123
135
(
2012
).
11.
J.
Paska
,
P.
Biczel
, and
M.
Kłos
, “
Hybrid power systems—An effective way of utilising primary energy sources
,”
Renewable Energy
34
,
2414
2421
(
2009
).
12.
P.
Díaz
,
C. A.
Arias
,
R.
Peña
, and
D.
Sandoval
, “
FAR from the grid: A rural electrification field study
,”
Renewable Energy
35
,
2829
2834
(
2010
).
13.
W.
Kellogg
,
M. H.
Nehrir
,
G.
Venkataramanan
, and
V.
Gerez
, “
Optimal unit sizing for a hybrid wind/photovoltaic generating system
,”
Electr. Power Syst. Res.
39
,
35
38
(
1996
).
14.
J.
Kaldellis
,
D.
Zafirakis
,
K.
Kavadias
, and
E.
Kondili
, “
Optimum PV-diesel hybrid systems for remote consumers of the Greek territory
,”
Appl. Energy
97
,
61
67
(
2012
).
15.
G.
Bekele
and
G.
Tadesse
, “
Feasibility study of small hydro/PV/wind hybrid system for off-grid rural electrification in Ethiopia
,”
Appl. Energy
97
,
5
15
(
2012
).
16.
H.
Cherif
and
J.
Belhadj
, “
Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit
,”
Energy
36
,
6058
6067
(
2011
).
17.
D.
Zejli
,
A.
Ouammi
,
R.
Sacile
,
H.
Dagdougui
, and
A.
Elmidaoui
, “
An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system
,”
Appl. Energy
88
,
4042
4054
(
2011
).
18.
J. K.
Kaldellis
, “
Optimum hybrid photovoltaic-based solution for remote telecommunication stations
,”
Renewable Energy
35
,
2307
2315
(
2010
).
19.
G. J.
Dalton
,
D. A.
Lockington
, and
T. E.
Baldock
, “
Feasibility analysis of stand-alone renewable energy supply options for a large hotel
,”
Renewable Energy
33
,
1475
1490
(
2008
).
20.
G. J.
Dalton
,
D. A.
Lockington
, and
T. E.
Baldock
, “
Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations
,”
Renewable Energy
34
,
1134
1144
(
2009
).
21.
A. T. D.
Perera
,
R. A.
Attalage
,
K. K. C. K.
Perera
, and
V. P. C.
Dassanayake
, “
Converting existing internal combustion generator (ICG) systems into HESs in standalone applications
,”
Energy Convers. Manage.
74
,
237
248
(
2013
).
22.
A. T. D.
Perera
,
R. A.
Attalage
, and
K. K. C. K.
Perera
, “
Multi objective optimization of lifecycle cost, unmet load, and renewable energy capacity for an expansion of existing standalone internal combustion generator (ICG) systems
,” in
ASME 5th International Conference on Energy Sustainability
,
2011
, pp.
1433
1440
.
23.
A. T. D.
Perera
,
D. M. I. J.
Wickremasinghe
,
D. V. S.
Mahindarathna
,
R. A.
Attalage
,
K. K. C. K.
Perera
, and
E. M.
Bartholameuz
, “
Determining wind turbine capacity for expansion of off grid internal combustion generators (ICG) system; why it becomes challenging?
,” in
IEEE International Conference on Sustainable Energy Technologies (ICSET)
,
2010
, pp.
1
5
.
24.
S. K.
Nandi
and
H. R.
Ghosh
, “
Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh
,”
Energy Policy
38
,
976
980
(
2010
).
25.
S. K.
Nandi
and
H. R.
Ghosh
, “
A wind–PV-battery hybrid power system at Sitakunda in Bangladesh
,”
Energy Policy
37
,
3659
3664
(
2009
).
26.
J. L.
Bernal-Agustín
and
R.
Dufo-López
, “
Multi-objective design and control of hybrid systems minimizing costs and unmet load
,”
Electr. Power Syst. Res.
79
,
170
180
(
2009
).
27.
X.
Pelet
,
D.
Favrat
, and
G.
Leyland
, “
Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions
,”
Int. J. Therm. Sci.
44
,
1180
1189
(
2005
).
28.
M. K.
Deshmukh
and
S. S.
Deshmukh
, “
Modeling of hybrid renewable energy systems
,”
Renewable Sustainable Energy Rev.
12
,
235
249
(
2008
).
29.
C.
Grigg
,
P.
Wong
,
P.
Albrecht
,
R.
Allan
,
M.
Bhavaraju
,
R.
Billinton
 et al., “
The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee
,”
IEEE Trans. Power Syst.
14
,
1010
1020
(
1999
).
30.
A.
Gupta
,
R. P.
Saini
, and
M. P.
Sharma
, “
Modelling of hybrid energy system—Part II: Combined dispatch strategies and solution algorithm
,”
Renewable Energy
36
,
466
473
(
2011
).
31.
C. D.
Barley
and
C. B.
Winn
, “
Optimal dispatch strategy in remote hybrid power systems
,”
Sol. Energy
58
,
165
179
(
1996
).
32.
A. T. D.
Perera
,
R. A.
Attalage
,
K. K. C. K.
Perera
, and
V. P. C.
Dassanayake
, “
Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission
,”
Energy
54
,
220
230
(
2013
).
33.
B.
Ould Bilal
,
V.
Sambou
,
P. A.
Ndiaye
,
C. M. F.
Kébé
, and
M.
Ndongo
, “
Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)
,”
Renewable Energy
35
,
2388
2390
(
2010
).
34.
R.
Dufo-López
and
J. L.
Bernal-Agustín
, “
Multi-objective design of PV–wind–diesel–hydrogen–battery systems
,”
Renewable Energy
33
,
2559
2572
(
2008
).
35.
H.
Yang
,
L.
Lu
, and
W.
Zhou
, “
A novel optimization sizing model for hybrid solar-wind power generation system
,”
Sol. Energy
81
,
76
84
(
2007
).
36.
A.
Konak
,
D. W.
Coit
, and
A. E.
Smith
, “
Multi-objective optimization using genetic algorithms: A tutorial
,”
Reliab. Eng. Syst. Saf.
91
,
992
1007
(
2006
).
37.
P.
Bajpai
and
V.
Dash
, “
Hybrid renewable energy systems for power generation in stand-alone applications: A review
,”
Renewable Sustainable Energy Rev.
16
,
2926
2939
(
2012
).
38.
O.
Erdinc
and
M.
Uzunoglu
, “
Optimum design of hybrid renewable energy systems: Overview of different approaches
,”
Renewable Sustainable Energy Rev.
16
,
1412
1425
(
2012
).
39.
R.
Luna-Rubio
,
M.
Trejo-Perea
,
D.
Vargas-Vázquez
, and
G. J.
Ríos-Moreno
, “
Optimal sizing of renewable hybrids energy systems: A review of methodologies
,”
Sol. Energy
86
,
1077
1088
(
2012
).
40.
M.
Fadaee
and
M. A. M.
Radzi
, “
Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review
,”
Renewable Sustainable Energy Rev.
16
,
3364
3369
(
2012
).
41.
D.
Connolly
,
H.
Lund
,
B. V.
Mathiesen
, and
M.
Leahy
, “
A review of computer tools for analysing the integration of renewable energy into various energy systems
,”
Appl. Energy
87
,
1059
1082
(
2010
).
42.
J. L.
Bernal-Agustín
and
R.
Dufo-López
, “
Efficient design of hybrid renewable energy systems using evolutionary algorithms
,”
Energy Convers. Manage.
50
,
479
489
(
2009
).
43.
G. C.
Seeling-Hochmuth
, “
A combined optimisation concept for the design and operation strategy of hybrid-PV energy systems
,”
Sol. Energy
61
,
77
87
(
1997
).
44.
R.
Dufo-López
and
J. L.
Bernal-Agustín
, “
Design and control strategies of PV-diesel systems using genetic algorithms
,”
Sol. Energy
79
,
33
46
(
2005
).
45.
T.
Khatib
,
A.
Mohamed
, and
K.
Sopian
, “
Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia
,”
Energy Build.
47
,
321
331
(
2012
).
46.
H.-C.
Chen
, “
Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability
,”
Appl. Energy
103
,
155
164
(
2013
).
47.
O.
Ekren
and
B. Y.
Ekren
, “
Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing
,”
Appl. Energy
87
,
592
598
(
2010
).
48.
S. M.
Hakimi
,
S. M.
Moghaddas-Tafreshi
, and
H.
HassanzadehFard
, “
Optimal sizing of reliable hybrid renewable energy system considered various load types
,”
J. Renewable Sustainable Energy
3
,
062701
(
2011
).
49.
S. M.
Hakimi
and
S. M.
Moghaddas-Tafreshi
, “
Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran
,”
Renewable Energy
34
,
1855
1862
(
2009
).
50.
A. K.
Kaviani
,
G. H.
Riahy
, and
S. M.
Kouhsari
, “
Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages
,”
Renewable Energy
34
,
2380
2390
(
2009
).
51.
K.
Deb
,
M.
Mohan
, and
S.
Mishra
, “
Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
,”
Evol. Comput.
13
,
501
525
(
2005
).
52.
M.
Laumanns
,
L.
Thiele
,
K.
Deb
, and
E.
Zitzler
, “
Combining convergence and diversity in evolutionary multiobjective optimization
,”
Evol. Comput.
10
,
263
282
(
2002
).
53.
K.
Deb
and
H.-G.
Beyer
,
Evolutionary Computation
9
,
197
221
(
2006
).
54.
K.
Deb
, “
An efficient constraint handling method for genetic algorithms
,”
Comput. Meth. Appl. Mech. Eng.
186
,
311
338
(
2000
).
55.
A. T. D.
Perera
,
D. M. I. J.
Wickremasinghe
,
D. V. S.
Mahindarathna
,
R. A.
Attalage
,
K. K. C.
Perera
, and
E. M.
Bartholameuz
, “
Novel simulation based evolutionary optimization algorithm to design stand-alone hybrid energy systems
,” in
3rd International Conference on Computer Modelling and Simulation (IEEE-ICCMS)
,
Mumbai, India
,
2011
, Vol. 1, pp.
272
275
.
56.
S. C.
Bhattacharyya
, “
Review of alternative methodologies for analysing off-grid electricity supply
,”
Renewable Sustainable Energy Rev.
16
,
677
694
(
2012
).
57.
A. T. D.
Perera
,
R. A.
Attalage
,
K. K. C. K.
Perera
, and
V. P. C.
Dassanayake
, “
A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems
,”
Appl. Energy
107
,
412
425
(
2013
).
You do not currently have access to this content.