Changes in global nutrient cycles as a result of industrialization affect both ecosystems and human well-being. A clear example of human manipulation on ecosystems is eutrophication; a phenomenon caused in receiving water bodies by discharge of urban sewage rich in nutrients such as nitrogen (N) and phosphorus (P). Microalgal nutrient removal is a viable alternative for biological wastewater treatment, considering high nutrient uptake capabilities of microalgae. These systems are also advantageous in terms of nutrient recycling and conversion into microalgal biomass, which, in turn, is a beneficial resource for biofuel production. In addition, microalgae can also aid reduction in atmospheric carbon dioxide levels, as a result of photosynthetic anabolism. In this study, a semi-continuous photobioreactor was operated for investigation of nutrient removal efficiency of unialgal culture, Chlorella vulgaris. Maximum N and P removal efficiencies of 99.6% and 91.2% were achieved in the photobioreactor. Biogas production from biomass obtained from semi-continuous photobioreactor was investigated via Biochemical Methane Potential assays. The results illustrated that maximum biogas yield of 442 ml/g Volatile Solids (VS) added could be achieved in anaerobic batch reactors fed with microalgal slurry.

1.
A. A.
Berhe
,
E.
Carpenter
,
L.
Codispoti
,
A.-M.
Izac
,
J.
Lemoalle
,
F.
Luizao
,
M.
Scholes
,
P.
Treguer
, and
B.
Ward
, “
Nutrient cycling
,” in
Ecosystems and HumanWell-Being: Current State and Trends
, edited by
R. M.
Hassan
,
R.
Scholes
, and
A.
Neville
(
Island Press
,
Washington, DC
,
2005
), pp.
333
351
.
2.
IPCC
, “
Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change
,” Climate Change 2007: The Physical Science Basis, United Kingdom,
New York, NY, USA
,
2007
.
3.
UNEP
,
Challenges to International Waters: Regional Assessments in a Global Perspective
(
Sunds Tryck Öland AB, Kalmar
,
Sweden
,
2006
), available at http://www.unep.org/dewa/giwa/publications/finalreport/giwa_final_report.pdf.
4.
S. W.
Nixon
, “
Coastal marine eutrophication—A definition, social causes, and future concerns
,”
Ophelia
41
,
199
219
(
1995
).
5.
S. R.
Carpenter
,
N. F.
Caraco
,
D. L.
Correll
,
R. W.
Howarth
,
A. N.
Sharpley
, and
V. H.
Smith
, “
Nonpoint pollution of surface waters with phosphorus and nitrogen
,”
Ecol. Appl.
8
,
559
568
(
1998
).
6.
Y.-S.
Yun
,
S. B.
Lee
,
J. M.
Park
,
C.-I.
Lee
, and
J.-W.
Yang
, “
Carbon dioxide fixation by algal cultivation using wastewater nutrients
,”
J. Chem. Technol. Biotechnol.
69
,
451
455
(
1997
).
7.
L.
Wang
,
Y.
Wang
,
P.
Chen
, and
R.
Ruan
, “
Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures
,”
Appl. Biochem. Biotechnol.
162
,
2324
2332
(
2010
).
8.
L.
Wang
,
M.
Min
,
Y.
Li
,
P.
Chen
,
Y.
Chen
,
Y.
Liu
,
Y.
Wang
, and
R.
Ruan
, “
Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant
,”
Appl. Biochem. Biotechnol.
162
,
1174
1186
(
2010
).
9.
C.
Li
,
H.
Yang
,
Y.
Li
,
L.
Cheng
,
M.
Zhang
,
L.
Zhang
, and
W.
Wang
, “
Novel bioconversions of municipal effluent and CO2 into protein rich Chlorella vulgaris biomass
,”
Bioresour. Technol.
132
,
171
177
(
2013
).
10.
A.
Ruiz-Marin
,
L. G.
Mendoza-Espinosa
, and
T.
Stephenson
, “
Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater
,”
Bioresour. Technol.
101
,
58
64
(
2010
).
11.
M. N.
García-Casal
,
J.
Ramírez
,
I.
Leets
,
A. C.
Pereira
, and
M. F.
Quiroga
, “
Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects
,”
Br. J. Nutr.
101
,
79
85
(
2009
).
12.
R.
Harun
,
M.
Singh
,
G. M.
Forde
, and
M. K.
Danquah
, “
Bioprocess engineering of microalgae to produce a variety of consumer products
,”
Renewable Sustainable Energy Rev.
14
,
1037
1047
(
2010
).
13.
T. M.
Mata
,
A. A.
Martins
, and
N. S.
Caetano
, “
Microalgae for biodiesel production and other applications: A review
,”
Renewable Sustainable Energy Rev.
14
,
217
232
(
2010
).
14.
A.
Vergarafernandez
,
G.
Vargas
,
N.
Alarcon
, and
A.
Velasco
, “
Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system
,”
Biomass Bioenergy
32
,
338
344
(
2008
).
15.
K.
Tsukahara
and
S.
Sawayama
, “
Liquid fuel production using microalgae
,”
J. Jpn. Pet. Inst.
48
,
251
259
(
2005
).
16.
J. H.
Mussgnug
,
V.
Klassen
,
A.
Schlüter
, and
O.
Kruse
, “
Microalgae as substrates for fermentative biogas production in a combined biorefinery concept
,”
J. Biotechnol.
150
,
51
56
(
2010
).
17.
J. B.
Holm-Nielsen
,
T.
Al Seadi
, and
P.
Oleskowicz-Popiel
, “
The future of anaerobic digestion and biogas utilization
,”
Bioresour. Technol.
100
,
5478
5484
(
2009
).
18.
C. G.
Golueke
,
W. J.
Oswald
, and
H. B.
Gotaas
, “
Anaerobic digestion of algae
,”
Appl. Microbiol.
5
,
47
55
(
1957
).
19.
W. J.
Oswald
and
H. B.
Gotaas
, “
Photosynthesis in sewage treatment
,”
Am. Soc. Civ. Eng., Trans.
2849
,
73
105
(
1957
).
20.
A. G.
Hashimoto
,
V. H.
Varel
, and
Y. R.
Chen
, “
Ultimate methane yield from beef cattle manure: Effect of temperature, ration constituents, antibiotics and manure age
,”
Agric. Wastes
3
,
241
256
(
1981
).
21.
G. N.
Demirer
and
S.
Chen
, “
Anaerobic biogasification of undiluted dairy manure in leaching bed reactors
,”
Waste Manage.
28
,
112
119
(
2008
).
22.
R.
Filali
,
S.
Tebbani
, and
D.
Dumur
, “
Growth modeling of the green microalga Chlorella vulgaris in an air-lift photobioreactor
,” in
18th IFAC World Congress
, 28 August–2 September
2011
, pp.
10603
10608
.
23.
R. E.
Speece
,
Anaerobic Biotechnology and Odor/Corrosion Control for Municipalities and Industries
(
Archea Press, Nashville
,
USA
,
2008
).
24.
K.
Larsdotter
, “
Wastewater treatment with microalgae—A literature review
,”
Vatten
62
,
31
38
(
2006
).
25.
M. G.
de Morais
and
J. A. V.
Costa
, “
Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors
,”
Biotechnol. Lett.
29
,
1349
1352
(
2007
).
26.
F.
Martinez
and
M. I.
Orus
, “
Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 1011
,”
Plant Physiol.
95
,
1150
1155
(
1991
).
27.
A. H.
Scragg
,
A. M.
Illman
,
A.
Carden
, and
S. W.
Shales
, “
Growth of microalgae with increased calorific values in a tubular bioreactor
,”
Biomass Bioenergy
23
,
67
73
(
2002
).
28.
C.
Yoo
,
S.-Y.
Jun
,
J.-Y.
Lee
,
C.-Y.
Ahn
, and
H.-M.
Oh
, “
Selection of microalgae for lipid production under high levels carbon dioxide
,”
Bioresour. Technol.
101
,
S71
S74
(
2010
).
29.
S.-Y.
Chiu
,
C.-Y.
Kao
,
C.-H.
Chen
,
T.-C.
Kuan
,
S.-C.
Ong
, and
C.-S.
Lin
, “
Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor
,”
Bioresour. Technol.
99
,
3389
3396
(
2008
).
30.
E. W.
Becker
,
Microalgae: Biotechnology and Microbiology
(
Cambridge University Press
,
Cambridge
,
2008
).
31.
G.
Tchobanoglous
,
F. L.
Burton
, and
H. D.
Stensel
,
Wastewater Engineering: Treatment, Disposal and Reuse
, 4th ed. (
McGraw-Hill, Inc.
,
New York
,
2003
).
32.
F. B.
Green
,
T. J.
Lundquist
, and
W. J.
Oswald
, “
Energetics of advanced integrated wastewater pond systems
,”
Water Sci. Technol.
31
,
9
20
(
1995
).
33.
S.
Sung
and
R. R.
Dague
, “
Laboratory studies on the anaerobic sequencing batch reactor
,”
Water Environ. Res.
67
,
294
301
(
1995
).
34.
M. E.
Alzate
,
R.
Muñoz
,
F.
Rogalla
,
F.
Fdz-Polanco
, and
S. I.
Pérez-Elvira
, “
Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment
,”
Bioresour. Technol.
123
,
488
494
(
2012
).
35.
C. L.
Williams
,
Methane Production from Anaerobic Co-Digestion of Chlorella vulgaris and Wastewater Sludge
(
San Diego State University
,
San Diego, CA, USA
,
2012
).
36.
M.
Ras
,
L.
Lardon
,
S.
Bruno
,
N.
Bernet
, and
J.-P.
Steyer
, “
Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris
,”
Bioresour. Technol.
102
,
200
206
(
2011
).
37.
A. O.
Jegede
, “
Anaerobic digestion of cyanobacteria and chlorella to produce methane for biofuel
,”
Int. J. Agric. Biol. Eng.
5
,
1
8
(
2012
).
38.
J. A.
Field
,
R. B.
Reneau
,
W.
Kroontje
, and
J. S.
Caldwell
, “
Nutrient recoveries from plug-flow anaerobic digestion of poultry manure
,”
Agric. Wastes
13
,
207
216
(
1985
).
39.
G. N.
Demirer
and
S.
Chen
, “
Two-phase anaerobic digestion of unscreened dairy manure
,”
Process Biochem.
40
,
3542
3549
(
2005
).
40.
N. I.
Krylova
,
R. E.
Khabiboulline
,
R. P.
Naumova
, and
M. A.
Nagel
, “
The influence of ammonium and methods for removal during the anaerobic treatment of poultry manure
,”
J. Chem. Technol. Biotechnol.
70
,
99
105
(
1997
).
You do not currently have access to this content.