The storage units decrease the operation cost of active distribution network considerably if they are managed optimally. In this paper, the short-term optimal scheduling of stationary batteries is presented. The point estimate method is used for considering uncertainty of load, wind-based distributed generation and plug-in electric vehicles as well as their influence on optimal scheduling. The optimal scheduling consists of minimizing cost objective function under technical constraints. In this paper, the cost objective function is composed of operation and reliability costs which are minimized using Tabu search algorithm. The storage units are used for several objectives, i.e., peak shaving, voltage regulation, and reliability enhancement. The numerical studies show the advantages of batteries for energy management in active distribution network, and the impact of uncertainties on optimal scheduling.

1.
R. U.
Ayres
,
H.
Turton
, and
T.
Casten
, “
Energy efficiency, sustainability and economic growth
,”
Energy
32
,
634
648
(
2007
).
2.
E. R.
Sanseverino
,
M. L.
Di Silvestre
,
M. G.
Ippolito
,
A.
De Paola
, and
G. L.
Re
, “
An execution, monitoring and replanning approach for optimal energy management in micro grids
,”
Energy
36
,
3429
3436
(
2011
).
3.
E.
Naderi
,
H.
Seifi
, and
M. S.
Sepasian
, “
A dynamic approach for distribution system planning considering distributed generation
,”
IEEE Trans. Power Delivery
27
,
1313
1322
(
2012
).
4.
A. A.
Moghaddam
,
A.
Seifi
,
T.
Niknam
, and
M. A.
Pahlavani
, “
Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source
,”
Energy
36
,
6490
6507
(
2011
).
5.
A.
Abedi
,
A.
Alimardani
,
G. B.
Gharehpetian
,
G. H.
Riahy
, and
S. H.
Hosseinian
, “
A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems
,”
Renewable Sustainable Energy Rev.
16
,
1577
1587
(
2012
).
6.
C. S.
Chen
,
T.
Duan
,
B.
Cai
, and
L. G.
Hu
, “
Smart energy management system for optimal microgrid economic operation
,”
IET Renewable Power Gener.
5
,
258
267
(
2011
).
7.
S.
Chakraborty
,
M. D.
Weiss
, and
M. G.
Simoes
, “
Distributed intelligent energy management system for a single-phase high-frequency AC microgrid
,”
IEEE Trans. Ind. Electron.
54
,
97
109
(
2007
).
8.
T.
Niknam
,
A.
Kavousifard
,
S.
Tabatabaei
, and
J.
Aghaei
, “
Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks
,”
J. Power Sources
196
,
8881
8896
(
2011
).
9.
Y. Y.
Hong
and
J. K.
Lin
, “
Interactive multi-objective active power scheduling considering uncertain renewable energies using adaptive chaos clonal evolutionary programming
,”
Energy
53
,
212
220
(
2013
).
10.
S.
Mohammadi
,
B.
Mozafari
, and
S.
Soleymani
, “
Optimal operation management of microgrids using the point estimate method and firefly algorithm while considering uncertainty
,”
Turk. J. Electr. Eng. Comput. Sci.
22
,
735
753
(
2014
).
11.
A.
Baziar
and
A.
Kavousi-Fard
, “
Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices
,”
Renewable Energy
59
,
158
166
(
2013
).
12.
C.
Weiller
, “
Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States
,”
Energy Policy
39
,
3766
3778
(
2011
).
13.
R. C.
Green
 II
,
L.
Wang
, and
M.
Alam
, “
The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook
,”
Renewable Sustainable Energy Rev.
15
,
544
553
(
2011
).
14.
P.
Minghong
,
L.
Lian
, and
J.
Chuanwen
, “
A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems
,”
Renewable Sustainable Energy Rev.
16
,
1508
1515
(
2012
).
15.
S. M.
Hakimi
and
S. M.
Moghaddas-Tafreshi
, “
Effect of plug-in hybrid electric vehicles charging/discharging management on planning of smart microgrid
,”
J. Renewable Sustainable Energy
4
,
063144
(
2012
).
16.
J.
Zhao
,
S.
Kucuksari
,
E.
Mazhari
, and
Y. J.
Son
, “
Integrated analysis of high-penetration PV and PHEV with energy storage and demand response
,”
Appl. Energy
112
,
35
51
(
2013
).
17.
A.
Schroeder
, “
Modeling storage and demand management in power distribution grids
,”
Appl. Energy
88
,
4700
4712
(
2011
).
18.
P.
Poonpun
and
W. T.
Jewell
, “
Analysis of the cost per kilowatt hour to store electricity
,”
IEEE Trans. Energy Convers.
23
,
529
534
(
2008
).
19.
A.
Hoke
,
A.
Brissette
,
K.
Smith
,
A.
Pratt
, and
D.
Maksimovic
, “
Accounting for lithium-ion battery degradation in electric vehicle charging optimization
,”
IEEE J. Emerging Sel. Top. Power Electron.
2
,
691
700
(
2014
).
20.
A.
Hoke
,
A.
Brissette
,
D.
Maksimovic
,
A.
Pratt
, and
K.
Smith
, “
Electric vehicle charge optimization including effects of lithium-ion battery degradation
,” in
IEEE Conference on Vehicle Power and Propulsion
(
2011
), pp.
1
8
.
21.
A.
Gabash
and
P.
Li
, “
Active-reactive optimal power flow in distribution networks with embedded generation and battery storage
,”
IEEE Trans. Power Syst.
27
,
2026
2035
(
2012
).
22.
E.
Naderi
,
I.
Kiaei
, and
M. R.
Haghifam
, “
NaS technology allocation for improving reliability of DG-enhanced distribution networks
,” in
IEEE Conference on Probabilistic Methods Applied to Power Systems
(
2010
), pp.
148
153
.
23.
M.
Sedghi
,
M.
Aliakbar-Golkar
, and
M. R.
Haghifam
, “
Distribution network expansion considering distributed generation and storage units using modified PSO algorithm
,”
Electr. Power Energy Syst.
52
,
221
230
(
2013
).
24.
B.
Zakeri
and
S.
Sanna
, “
Electrical energy storage systems: A comparative life cycle cost analysis
,”
Renewable Sustainable Energy Rev.
42
,
569
596
(
2015
).
25.
Q.
Li
,
S. S.
Choi
,
Y.
Yuan
, and
D. L.
Yao
, “
On the determination of battery energy storage capacity and short-term power dispatch of a wind farm
,”
IEEE Trans. Sustainable Energy
2
,
148
158
(
2011
).
26.
D. L.
Yao
,
S. S.
Choi
,
K. J.
Tseng
, and
T. T.
Lie
, “
Determination of short-term power dispatch schedule for a wind farm incorporated with dual-battery energy storage scheme
,”
IEEE Trans. Sustainable Energy
3
,
74
84
(
2012
).
27.
E. M.
Krieger
, “
Effects of variability and rate on battery charge storage and lifespan
,” Ph.D. dissertation (
Princeton University
,
2013
).
28.
R.
Kollu
,
S. R.
Rayapudi
,
S. V. L.
Narasimham
, and
K. M.
Pakkurthi
, “
Mixture probability distribution functions to model wind speed distributions
,”
Int. J. Energy Environ. Eng.
3
,
27
(
2012
).
29.
C.
Opathella
,
B.
Venkatesh
, and
A.
Dukpa
, “
Probabilistic voltage solution method for distribution systems with wind electric generators
,” in
Proceedings of International Power Engineering Conference
(
2010
), pp.
220
223
.
30.
J.
Wang
,
C.
Liu
,
D.
Ton
,
Y.
Zhou
,
J.
Kim
, and
A.
Vyas
, “
Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power
,”
Energy Policy
39
,
4016
4021
(
2011
).
31.
W.
Su
,
H. R.
Eichi
,
W.
Zeng
, and
M.
Chow
, “
A survey on the electrification of transportation in a smart grid environment
,”
IEEE Trans. Ind. Inf.
8
,
1
10
(
2012
).
32.
E.
Pashajavid
and
M. A.
Golkar
, “
Optimal placement and sizing of plug in electric vehicles charging stations within distribution networks with high penetration of photovoltaic panels
,”
J. Renewable Sustainable Energy
5
,
053126
(
2013
).
33.
J. M.
Morales
,
L.
Baringo
,
A. J.
Conejo
, and
R.
Minguez
, “
Probabilistic power flow with correlated wind sources
,”
IET Gener. Transm. Distrib.
4
,
641
651
(
2010
).
34.
J. M.
Morales
and
J.
Perez-Ruiz
, “
Point estimate schemes to solve the probabilistic power flow
,”
IEEE Trans. Power Syst.
22
,
1594
1601
(
2007
).
35.
G.
Verbic
and
C. A.
Canizares
, “
Probabilistic optimal power flow in electricity markets based on a two-point estimate method
,”
IEEE Trans. Power Syst.
21
,
1883
1893
(
2006
).
36.
Q.
Fu
,
D.
Yu
, and
J.
Ghorai
, “
Probabilistic load flow analysis for power systems with multi-correlated wind sources
,” in
IEEE Power Energy Society General Meeting
(
2011
), pp.
1
6
.
37.
T.
Williams
and
C.
Crawford
, “
Probabilistic load flow modeling comparing maximum entropy and gram-charlier probability density function reconstructions
,”
IEEE Trans. Power Syst.
28
,
272
280
(
2013
).
38.
M. C.
Kisacikoglu
, “
Vehicle-to-grid (V2G) reactive power operation analysis of the EV/PHEV bidirectional battery charger
,” PhD dissertation (
The University of Tennessee
,
2013
).
39.
J. H.
Park
,
H. G.
Jeong
, and
K. B.
Lee
, “
Output current ripple reduction algorithms for home energy storage systems
,”
Energies
6
,
5552
5569
(
2013
).
40.
A.
Gabash
and
P.
Li
, “
Flexible optimal operation of battery storage systems for energy supply networks
,”
IEEE Trans. Power Syst.
28
,
2788
2797
(
2013
).
41.
M. E. H.
Golshan
and
S. A.
Arefifar
, “
Distributed generation, reactive sources and network-configuration planning for power and energy-loss reduction
,”
IET Gener. Transm. Distrib.
153
,
127
136
(
2006
).
42.
E. K.
Burke
and
G.
Kendall
,
Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques
(
Springer
,
New York
,
2005
).
43.
M. A.
Abido
, “
Optimal power flow using Tabu search algorithm
,”
Electr. Power Compon. Syst.
30
,
469
483
(
2002
).
44.
J. A.
Dominguez
,
J. M.
Yusta
,
P.
Pisa
, and
H.
Khodr
, “
Optimal power flow algorithm based on Tabu search for meshed distribution networks
,” in
Proceedings of 14th Power Systems Computation Conference
(
2002
), pp.
1
6
.
45.
E. G.
Carrano
,
F. G.
Guimaraes
,
R. H. C.
Takahashi
,
O. M.
Netoand
, and
F.
Campelo
, “
Electric distribution network expansion under load-evolution uncertainty using an immune system inspired algorithm
,”
IEEE Trans. Power Syst.
22
,
851
861
(
2007
).
46.
A.
Kusiak
and
H.
Zheng
, “
Optimization of wind turbine energy and power factor with an evolutionary computation algorithm
,”
Energy
35
,
1324
1332
(
2010
).
47.
See http://www.suna.org.ir for “Renewable Energy Organization of Iran,” (last accessed January 25,
2014
).
48.
R.
Billinton
and
P.
Wang
, “
Distribution system reliability cost/worth analysis using analytical and sequential simulation techniques
,”
IEEE Trans. Power Syst.
13
,
1245
1250
(
1998
).
49.
E. G.
Carrano
,
F. G.
Guimaraes
,
R. H. C.
Takahashi
,
O. M.
Neto
, and
F.
Campelo
, “
Electric distribution network expansion under load evolution uncertainty using an immune system inspired algorithm: Simulation data
,”
Universidade Federal de Minas Gerais
,
2007
.
You do not currently have access to this content.