This paper investigates the techno-economic analysis of standalone PV/wind hybrid system for remote household in North East (NE) region of India, where grid connectivity is not a feasible option. HOMER simulation software is used for sizing, optimization, and to perform the economical analysis of the hybrid system. Sensitivity analysis is carried out with solar radiation data, wind speed data, cost of PV and wind system for a 1 kW PV/wind hybrid system. The analysis is made on the assumption of an annual peak, scaled annual average, and the average load of 694 W, 3.95 kWh/day, and 0.165 kW, respectively, for a remote household. The optimal sizing, cost of electricity (COE), battery profile, and converter profile of PV/wind hybrid system for different NE states are presented in this paper. The outcome of this study shows that COE for the NE states is found to be in the range of 0.271–0.510 $/kWh, which is a acceptable margin and a hybrid PV/wind system will go a long way in addressing the shortage of power faced by a large section of the population on daily basis in the rural areas of the aforementioned region.

1.
M.
Ibrahim
,
M.
Anisuzzaman
,
S.
Kumar
, and
S. C.
Bhattacharya
,
Sol. Energy
72
(
6
),
521
(
2002
).
2.
P.
Garg
,
J. Sustainable Energy Environ.
3
,
7
(
2012
), available online at http://www.jseejournal.com/JSEE_Vol3No1_2012.html.
3.
S.
Szabó
,
A.
Jäger-Waldauand
, and
L.
Szabó
,
Energy Policy
38
(
7
),
3807
(
2010
).
4.
See http://mnre.gov.in/file-manager/annual-report/2012-2013/EN/chapter8.html for Renewable Energy in North-Eastern States (retrieved on 15th August,
2014
).
5.
See http://mnre.gov.in/file-manager/annual-report/2012-2013/EN/chapter4.html for Jawaharlal Nehru National Solar Mission (retrieved on 15th August,
2014
).
6.
S.
Mekhilef
,
S. Z.
Faramarzi
,
R.
Saidur
, and
Z.
Salam
,
Renewable Sustainable Energy Rev.
18
,
583
(
2013
).
7.
J. K.
Kaldellis
,
E.
Kondili
, and
A.
Filios
,
Appl. Energy
83
,
1384
(
2006
).
8.
D.
Saheb-Koussa
,
M.
Haddadi
, and
M.
Belhamel
,
Appl. Energy
86
(
7–8
),
1024
(
2009
).
9.
W.
Kellogg
,
M. H.
Nehrir
,
G.
Venkataramanan
, and
V.
Gerez
,
Electr. Power Syst. Res.
39
(
1
),
35
(
1996
).
10.
A. N.
Celik
,
Renewable Energy
31
(
1
),
105
(
2006
).
11.
A. J.
Cavello
and
M. J.
Grubb
,
Renewable Energy Sources for Fuels and Electricity
(
London
,
Earthscan
,
1993
), p.
121
.
12.
L.
Chun-Xia
and
W.
Jian-Hua
,
J. Taiyuan Univ. Sci. Technol.
2011
,
167
(
2011
), available at http://caod.oriprobe.com/issues/793382/toc.htm.
13.
S.
Rehman
,
I. M.
El-Amin
,
F.
Ahmad
,
S. M.
Shaahid
,
A. M.
Al-Shehriam
,
J. M.
Bakhashwain
, and
A.
Shash
,
Renewable Sustainable Energy Rev.
11
(
4
),
635
(
2007
).
14.
Y.
Himri
,
A.
Boudghene Stamboulia
,
B.
Draoui
, and
S.
Himri
,
Energy
33
(
7
),
1128
(
2008
).
15.
E. S.
Hrayshat
,
Energy Sustainable Dev.
13
(
3
),
143
(
2009
).
16.
C. C.
Fung
,
W.
Rattanongphisat
, and
C.
Nayar
, in
Computers, Communications, Control And Power Engineering 2002: Proceedings of the IEEE Region 10 Conference on Computers, Communications, Control And Power Engineering (TENCON'02)
(
2002
), Vol.
3
, pp.
1996
1969
.
17.
R. W.
Wies
,
R. A.
Johnson
,
A. N.
Agarwal
, and
T. J.
Chubb
,
IEEE Trans. Power Syst.
20
(
2
),
692
(
2005
).
18.
E. I.
Zoulias
and
N.
Lymberopoulos
,
Renewable Energy
32
(
4
),
680
(
2007
).
19.
N. N.
Barsoum
and
P.
Vacent
, in
Modelling and Simulation 2007: Proceedings of the 1st Asia Intentional Conference on IEEE Modelling and Simulation
(
2007
), pp.
14
18
.
20.
S. M.
Shaahid
and
M. A.
Elhadidy
,
Renewable Sustainable Energy Rev.
11
(
8
),
1794
(
2007
).
21.
I.
Moriana
,
I. S.
Martin
, and
P.
Sanchis
, in
Power Electronics Electrical Drives Automation and Motion (SPEEDAM) 2010: Proceedings of the SPEEDAM
(
2010
), pp.
610
616
.
22.
Y. M.
Atwa
,
E. F.
El-Saadany
,
M. M. A.
Salama
,
R.
Seethapathy
,
M.
Assam
, and
S.
Conti
,
IEEE Trans. Power Syst.
26
(
4
),
1945
(
2011
).
23.
M. H.
Nehrir
,
B. J.
LaMeres
,
G.
Venkataramanan
,
V.
Gerez
, and
L. A.
Alvarado
,
IEEE Trans. Energy Convers.
15
(
4
),
433
(
2000
).
24.
R. M.
Moharil
and
P. S.
Kulkarni
,
Renewable Sustainable Energy Rev.
13
(
3
),
673
(
2009
).
25.
G. B.
Shrestha
and
L.
Goel
,
IEEE Trans. Energy Convers.
13
(
4
),
373
(
1998
).
26.
R.
Anindita
,
B.
Shireesh
, and
B.
Santanu
,
Appl. Energy
86
(
12
),
2690
(
2009
).
27.
A. H.
Al-Badi
,
Int. J. Sustainable Energy
30
(
2
),
110
(
2011
).
28.
J. K.
Kaldellis
,
Appl. Energy
77
(
1
),
35
(
2004
).
29.
A.
El-Shafy
and
A.
Nafeh
,
Int. J. Green Energy
8
(
1
),
25
(
2011
).
30.
M. S.
Kaiser
and
S. K.
Aditya
,
J. Eng. Appl. Sci.
1
,
93
97
(
2006
).
31.
S. H.
Karaki
,
R. B.
Chedid
, and
R.
Ramadan
,
IEEE Trans. Energy Convers.
14
(
3
),
766
(
1999
).
32.
M.
Muselli
,
G.
Notton
,
P.
Poggi
, and
A.
Louche
,
Renewable Energy
20
(
1
),
1
(
2000
).
33.
S.
Diaf
,
G.
Notton
,
M.
Belhamel
, and
A.
Louche
,
Appl. Energy
85
(
10
),
968
(
2008
).
34.
S.
Tudisca
,
A. M.
Di Trapani
,
F.
Sgroi
,
R.
Testa
, and
R.
Squatrito
,
Renewable Sustainable Energy Rev.
28
(
6
),
691
(
2013
).
35.
S.
Kamel
and
C.
Dahl
,
Energy
30
(
8
),
1271
(
2005
).
36.
M. J.
Khan
and
M. T.
Iqbal
,
Renewable Energy
30
(
6
),
835
(
2005
).
37.
M. A.
Elhadidy
and
S. M.
Saahid
,
Renewable Energy
16
(
1–4
),
970
(
1999
).
38.
A. M. A.
Haidar
,
P. N.
John
, and
M.
Shawal
,
Renewable Energy
36
(
2
),
881
(
2011
).
39.
G.
Boyle
,
Renewable Energy
(
Oxford University Press
,
USA
,
2004
).
40.
T.
Khatib
,
A.
Mohamed
, and
K.
Sopian
,
J. Renewable Sustainable Rev.
22
,
454
(
2013
).
41.
See https://eosweb.larc.nasa.gov/sse/ for a renewable energy resource web site (release 6.0).
42.
R.
Squatrito
,
F.
Sgroi
,
S.
Tudisca
,
A. M.
Di Trapani
, and
R.
Testa
,
Energies
7
(
11
),
7147
(
2014
).
43.
F.
Sgroi
,
S.
Tudisca
,
A. M.
Di Trapani
,
R.
Testa
, and
R.
Squatrito
,
Energies
7
(
6
),
3985
(
2014
).
44.
D. L.
Talavera
,
G.
Nofuentes
,
J.
Aguilera
, and
M.
Fuentes
,
Renewable Sustainable Energy Rev.
11
(
3
),
447
(
2007
).
You do not currently have access to this content.