This paper presents the reliability evaluation technique of a standalone system including renewable energy resources such as wind and photovoltaic (PV), integrated with battery energy storage system. The focus in this study is on the effect of the operating restrictions of battery on system reliability by presenting a new modeling of battery. In this regard, the proposed reliability evaluation method is based on the combination of the analytical and simulation approaches in the domain of adequacy studies. In this technique based on time series approach, the realistic model of the electrochemical behaviors for the battery bank can be considered. The electrochemical behaviors change in different operation conditions, i.e., temperature, state of charge and charging/discharging current. In this way, a sample lead-acid battery is considered and then a new capacity model for the battery bank is presented based on the realistic electrochemical behaviors related to reserve applications. Simulation results for a case study are presented. The influence of battery modeling in the different studies is discussed and the beneficial results are assessed.

1.
B. P.
Roberts
, “
Sodium-sulfur (NaS) batteries for utility energy storage applications
,” in
IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century
, Pittsburgh, PA (
IEEE
,
2008
).
2.
J. F.
Barton
and
D. G.
Infield
, “
Energy storage and its use with intermittent renewable energy
,”
IEEE Trans. Energy Convers.
19
(
2
),
441
448
(
2004
).
3.
L.
Soder
,
L.
Hofmann
,
A.
Orths
,
H.
Holttinen
,
W.
Yih-Huei
, and
A.
Tuohy
, “
Experience from wind integration in some high penetration areas
,”
IEEE Trans. Energy Convers.
22
(
1
),
4
12
(
2007
).
4.
F.
Díaz-Gonzáleza
,
A.
Sumper
,
O.
Gomis-Bellmunt
, and
R.
Villafáfila-Robles
, “
A review of energy storage technologies for wind power applications
,”
Renewable Sustainable Energy Rev.
16
(
4
),
2154
2171
(
2012
).
5.
H.
Ibrahim
,
A.
Ilinca
, and
J.
Perron
, “
Energy storage systems—Characteristics and comparisons
,”
Renewable Sustainable Energy Rev.
12
(
5
),
1221
1250
(
2008
).
6.
J.
Wen
,
Y.
Zheng
, and
F.
Donghan
, “
A review on reliability assessment for wind power
,”
Renewable Sustainable Energy Rev.
13
(
9
),
2485
2494
(
2009
).
7.
N.
Pradhan
,
N. R.
Karki
, and
B. R.
Pokhrel
, “
Reliability evaluation of small standalone hybrid solar PV-wind power system
,” in
IEEE Third International Conference on Sustainable Energy Technologies (ICSET)
, Kathmandu (
IEEE
,
2012
), pp.
259
264
.
8.
N.
Pradhan
and
N. R.
Karki
, “
Probabilistic reliability evaluation of off-grid small hybrid solar PV-wind power system for the rural electrification in Nepal
,” in
North American Power Symposium (NAPS)
(
IEEE
,
2012
).
9.
P.
Hu
,
R.
Karki
, and
R.
Billinton
, “
Reliability evaluation of generating systems containing wind power and energy storage
,”
IET Gener. Transm. Distrib.
3
(
8
),
783
791
(
2009
).
10.
C. X.
Wu
,
C. Y.
Chung
,
F. S.
Wen
, and
D. Y.
Du
, “
Reliability/cost evaluation with PEV and wind generation system
,”
IEEE Trans. Sustainable Energy
5
(
1
),
273
281
(
2014
).
11.
S.
Ge
,
L.
Xu
,
H.
Liu
, and
M.
Zhao
, “
Reliability assessment of active distribution system using Monte Carlo simulation method
,”
J. Appl. Math.
2014
,
1
10
.
12.
R.
Billiton
,
R.
Karki
,
Y.
Gao
,
H.
Dange
,
H.
Po
, and
W.
Wangdee
, “
Adequacy assessment considerations in wind integrated power systems
,”
IEEE Trans. Power Syst.
27
(
4
),
2297
2305
(
2012
).
13.
O.
Özgönenel
and
D. W. P.
Thomas
, “
Short-term wind speed estimation based on weather data
,”
Turk. J. Electr. Eng. Comput. Sci.
20
(
3
),
335
346
(
2012
).
14.
J.
Almorox
, “
Estimating global solar radiation from common meteorological data in Aranjuez, Spain
,”
Turk. J. Phys.
35
,
53
64
(
2011
).
15.
A.
Heshmati
,
H. R.
Najafi
,
R.
Aghaebrahimi
, and
M.
Mehdizadeh
, “
Wind farm modeling for reliability assessment from the viewpoint of interconnected systems
,”
Electr. Power Compon. Syst.
40
(
3
),
257
272
(
2012
).
16.
Q.
Zhilong
,
L.
Wenyuan
, and
X.
Xiaofu
, “
Generation system reliability evaluation incorporating correlations of wind speeds with different distributions
,”
IEEE Trans. Power Syst.
28
(
1
),
551
558
(
2013
).
17.
R. M.
Moharil
and
P. S.
Kulkarni
, “
Reliability analysis of solar photovoltaic system using hourly mean solar radiation data
,”
Sol. Energy
84
,
691
702
(
2010
).
18.
B.
Bagen
,
Y.
Gao
, and
W. Y.
Li
, “
Comparison of alternative probabilistic techniques for adequacy assessment of small isolated wind/diesel systems
,”
Int. J. Syst. Assur. Eng. Manage.
1
(
2
),
129
134
(
2010
).
19.
R.
Billinton
and
Y.
Gao
, “
Multistate wind energy conversion system models for adequacy assessment of generating systems incorporating wind energy
,”
IEEE Trans. Energy Convers.
23
(
1
),
163
170
(
2008
).
20.
Y.
Gao
and
R.
Billinton
, “
Adequacy assessment of generating systems containing wind power considering wind speed correlation
,”
IET Renewable Power Gener.
3
(
2
),
217
226
(
2009
).
21.
A.
Ghaedi
,
A.
Abbaspour
,
M.
Fotuhi-Friuzabad
, and
M.
Parvania
, “
Incorporating large photovoltaic farms in power generation system adequacy assessment
,”
Sci. Iran.
21
(
3
),
924
934
(
2014
).
22.
M.
Aien
,
A.
Biglari
, and
M.
Rashidinejad
, “
Probabilistic reliability evaluation of hybrid wind-photovoltaic power systems
,” in
21st Iranian Conference on Electrical Engineering (ICEE)
, Iran, Mashhad (
IEEE
,
2013
).
23.
Z. M.
Salameh
,
M. A.
Casacca
, and
W. A.
Lynch
, “
A mathematical model for lead–acid batteries
,”
IEEE Trans. Energy Convers.
7
(
1
),
93
98
(
1992
).
24.
M.
Ceraolo
, “
New dynamical models of lead–acid batteries
,”
IEEE Trans. Power Syst.
15
(
4
),
1184
1190
(
2000
).
25.
H.
Delavaripour
,
H. R.
Karshenas
,
A. R.
Bakhshai
, and
P.
Jain
, “
Optimum battery size selection in standalone renewable energy systems
,” in
33rd International Telecommunications Energy Conference (INTELEC)
, Amsterdam (
IEEE
,
2011
).
26.
H.
Aksoy
,
Z. F.
Toprak
,
A.
Aytek
, and
N.
Erdem
, “
Stochastic generation of hourly mean wind speed data
,”
Renewable Energy
29
(
14
),
2111
2131
(
2004
).
27.
R.
Karki
,
S.
Thapa
, and
R.
Billinton
, “
Operating risk analysis of wind-integrated power systems
,”
Electr. Power Compon. Syst.
40
(
4
),
399
413
(
2012
).
28.
P. A. C.
Rocha
,
R. C.
de Sousa
,
C. F.
de Andrade
, and
M.
da Silva
, “
Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil
,”
Appl. Energy
89
(
1
),
395
400
(
2012
).
29.
G. M. J.
Herbert
,
S.
Iniyan
, and
R.
Goic
, “
Performance, reliability and failure analysis of wind farm in a developing Country
,”
Renewable Energy
35
,
2739
2751
(
2010
).
30.
Y. M.
Atwa
,
E. F.
El-Saadany
,
M. M. A.
Salama
, and
R.
Seethapathy
, “
Optimal renewable resources mix for distribution system energy loss minimization
,”
IEEE Trans. Power Syst.
25
(
1
),
360
370
(
2010
).
31.
P.
Zhang
,
W.
Li
,
S.
Li
,
Y.
Wang
, and
W.
Xiao
, “
Reliability assessment of photovoltaic power systems: Review of current status and future perspectives
,”
Appl. Energy
104
(
1
),
822
833
(
2013
).
32.
P. M.
Subcommittee
, “
IEEE reliability test system
,”
IEEE Trans. Power Appl. Syst.
98
(
6
),
2047
2054
(
1979
).
33.
R.
Billinton
and
D.
Huang
, “
Wind power modeling and the determination of capacity credit in an electric power system
,”
Proc. Inst. Mech. Eng., Part O
224
(
1
),
1
9
(
2010
).
34.
R. P.
Mukund
,
Wind and Solar Power System: Design, Analysis, and Operation
(
Taylor & Francis
,
New York
,
2006
), pp.
185
220
.
You do not currently have access to this content.