Under partial shading conditions (e.g., due to buildings, trees, and clouds), multiple peaks may exist on the power-voltage (P-V) characteristic curve of photovoltaic (PV) array, leading to the conventional maximum power point tracking methods fail to extract the global maximum power point (GMPP). In this paper, a mathematical model of PV array under partial shading conditions with a voltage calculated principle is established. The presented model is implemented with an m-file in MATLAB software, which is used as a tool to study the non-linear characteristics of current-voltage (I-V) and P-V curves of PV array, as well as quickly develop the GMPP tracking controllers. Besides, an adaptive random particle swarm optimization (ARPSO) algorithm is presented to accurately extract the GMPP under partial shading conditions. Five simulation cases with different partial shading patterns are used to evaluate the performance of the presented approach by comparing with the conventional PSO, perturbation and observation (P&O), incremental conductance (INC), and genetic algorithm (GA) methods. Simulation results show that the ARPSO algorithm can rapidly find the GMPP under different shading conditions compared with the conventional PSO algorithm. Furthermore, the presented algorithm can accurately extract the GMPP when the shading condition sharply changes, while the P&O and INC algorithms fail to track the GMPP, but only detect the rightmost MPP encountered either local or global and regardless of the course. Besides, the ARPSO can rapidly and accurately converge to the GMPP with smaller population size and higher convergence speed compared with the GA.

1.
N.
Mutoh
,
T.
Matuo
,
K.
Okada
, and
M.
Sakai
, “
Prediction-data based maximum-power-point-tracking method for photovoltaic power generation systems
,” in
IEEE Annual Power Electronics Specialists Conference
(
2002
), Vol.
3
, pp.
1489
1494
.
2.
K.
Kobayashi
,
H.
Matsuo
, and
Y.
Sekine
, “
A novel optimum operating point tracker of the solar cell power supply system
,” in
IEEE Annual Power Electronics Specialists Conference
(
2004
), Vol.
3
, pp.
2147
2151
.
3.
N.
Femia
,
G.
Petrone
,
G.
Spagnuolo
, and
M.
Vitelli
, “
A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems
,”
IEEE Trans. Ind. Electron.
56
,
4473
4482
(
2009
).
4.
N.
Fermia
,
D.
Granozio
,
G.
Petrone
, and
M.
Vitelli
, “
Predictive & adaptive MPPT perturb and observe method
,”
IEEE Trans. Aerosp. Electron. Syst.
43
,
934
950
(
2007
).
5.
A. K.
Abdelsalam
,
A. M.
Massoud
,
S.
Ahmed
, and
P. N.
Enjeti
, “
High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids
,”
IEEE Trans. Power Electron.
26
,
1010
1021
(
2011
).
6.
S.
Jain
and
V.
Agarwal
, “
A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems
,”
IEEE Trans. Power Electron. Lett.
2
,
16
19
(
2004
).
7.
W.
Xiao
and
W. G.
Dunford
, “
A modified adaptive hill climbing MPPT method for photovoltaic power systems
,” in
IEEE Annual Power Electronics Specialists Conference
(
2004
), Vol.
3
, pp.
1957
1963
.
8.
F.
Liu
,
S.
Duan
,
F.
Liu
,
B.
Liu
, and
Y.
Kang
, “
A variable step size INC MPPT method for PV systems
,”
IEEE Trans. Ind. Electron.
55
,
2622
2628
(
2008
).
9.
A.
Safari
and
S.
Mekhilef
, “
Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter
,”
IEEE Trans. Ind. Electron.
58
,
1154
1161
(
2011
).
10.
P. E.
Kakosimos
and
A. G.
Kladas
, “
Implementation of photovoltaic array MPPT through fixed step predictive control technique
,”
Renewable Energy
36
,
2508
2514
(
2011
).
11.
Y.
Tian
,
B. Z.
Xia
,
Z. H.
Xu
, and
W.
Sun
, “
Modified asymmetrical variable step size incremental conductance maximum power point tracking method for photovoltaic systems
,”
J. Power Electron.
14
,
156
164
(
2014
).
12.
Q.
Mei
,
M.
Shan
,
L.
Liu
, and
J. M.
Guerrero
, “
A novel improved variable step-size incremental-resistance MPPT method for PV systems
,”
IEEE Trans. Ind. Electron.
58
,
2427
2434
(
2011
).
13.
E. M.
Ahmed
and
M.
Shoyama
, “
Scaling factor design based variable step size incremental resistance maximum power point tracking for PV systems
,”
J. Power Electron.
12
,
164
171
(
2012
).
14.
A.
Pallavee Bhatnagar
and
B. R. K.
Nema
, “
Conventional and global maximum power point tracking techniques in photovoltaic applications: A review
,”
J. Renewable Sustainable Energy
5
,
032701
(
2013
).
15.
Y.
Shaiek
,
M. B.
Smida
,
A.
Sakly
, and
M. F.
Mimouni
, “
Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators
,”
Sol. Energy.
90
,
107
122
(
2014
).
16.
P.
Hiren
and
A.
Vivek
, “
MATLAB-based modeling to study the effects of partial shading on PV array characteristics
,”
IEEE Trans. Energy Convers.
23
,
302
310
(
2008
).
17.
K.
Ishaque
,
Z.
Salam
, and
Syafaruddin
, “
A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model
,”
Sol. Energy
85
,
2217
2227
(
2011
).
18.
L. Q.
Li
,
C. X.
Liu
, and
H. M.
Gao
, “
A novel improved particle swarm optimization maximum power point tracking control method for photovoltaic array by using current calculated predicted arithmetic under partially shaded conditions
,”
J. Renewable Sustainable Energy
5
,
063139
(
2013
).
19.
E.
Koutroulis
and
F.
Blaabjerg
, “
A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions
,”
IEEE J. Photovoltaics
2
,
184
190
(
2012
).
20.
M.
Miyatake
,
T.
Inada
,
I.
Hiratsuka
,
Z.
Hongyan
 et al., “
Control characteristics of a Fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded
,” in
4th International Conference on Power Electronics and Motion Contro
l (
2004
), Vol.
2
, pp.
816
821
.
21.
K.
Kobayshi
,
I.
Takano
, and
Y.
Sawada
, “
A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions
,”
Sol. Energy Mater. Sol. Cells
90
,
2975
2988
(
2006
).
22.
H.
Patel
and
V.
Agarwal
, “
Maximum power point tracking scheme for PV systems operating under partially shaded conditions
,”
IEEE Trans. Ind. Electron.
55
,
1689
98
(
2008
).
23.
Y. H.
Ji
,
D. Y.
Jung
,
J. G.
Kim
,
J. H.
Kim
 et al., “
A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions
,”
IEEE Trans. Power Electron.
26
,
1001
1009
(
2011
).
24.
J.
Qi
,
Y. B.
Zhang
, and
Y.
Chen
, “
Modeling and maximum power point tracking (MPPT) for PV array under partial shade conditions
,”
Renewable Energy
66
,
337
345
(
2014
).
25.
M.
Miyatake
,
M.
Veerachary
,
F.
Toriumi
,
N.
Fujii
 et al., “
Maximum power point tracking of multiple photovoltaic arrays: a particle swarm optimization approach
,”
IEEE Trans. Aerosp. Electron. Syst.
47
,
367
80
(
2011
).
26.
S.
Roy Chowdhury
and
H.
Saha
, “
Maximum power point tracking of partially shaded solar photovoltaic arrays
,”
Sol. Energy Mater. Sol. Cells
94
,
1441
1447
(
2011
).
27.
K.
Ishaque
,
Z.
Salam
,
A.
Shamsudin
, and
M.
Amjad
, “
A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm
,”
Appl. Energy
99
,
414
422
(
2012
).
28.
M.
Seyedmahmoudian
,
S.
Mekhilef
,
R.
Rahmani
,
R.
Yusof
 et al., “
Maximum power point tracking of partial shaded photovoltaic array using an evolutionary algorithm: A particle swarm optimization technique
,”
J. Renewable Sustainable Energy
6
,
023102
(
2014
).
29.
Y.
Yushaizad
,
H.
Siti
, and
A. L.
Muhammad
, “
Modeling and simulation of maximum power point tracker for photovoltaic system
,” in
National Power and Energy Conference
(
2004
), pp.
88
93
.
30.
J.
Kennedy
and
R.
Eberhart
, “
Particle swarm optimization
,” in
Proceedings of IEEE International Conference on Neural Networks
(
1995
), Vol.
4
, pp.
1942
1948
.
31.
P. T.
Vu
,
D. L.
Le
,
N. D.
Vo
, and
J.
Tlusty
, “
A novel weight-improved particle swarm optimization algorithm for optimal power flow and economic load dispatch problems
,” in
IEEE Transmission and Distribution Conference and Exposition
(
2010
), pp.
1
7
.
32.
V. N.
Dieu
,
P.
Schegner
, and
W.
Ongsakul
, “
A newly improved particle swarm optimization for economic dispatch with valve point loading effects
,” in
IEEE Power and Energy Society General Meeting
(
2011
), pp.
1
8
.
33.
J. E.
Mendoza
,
D. A.
Morales
,
R. A.
Lopez
,
E. A.
Lopez
,
J. C.
Vannier
, and
C. A.
Coello Coello
, “
Multiobjective location of automatic voltage regulators in a radial distribution network using a micro genetic algorithm
,”
IEEE Trans. Power Syst.
22
,
404
412
(
2007
).
34.
X. M.
Dai
, “
Allele gene based adaptive genetic algorithm to the code design
,”
IEEE Trans. Commun.
59
,
1253
1258
(
2011
).
You do not currently have access to this content.