The main objective of this study is to develop single location appropriate models for the estimation of the monthly average daily global and diffuse horizontal solar radiation for Brasov, Romania. The study focuses particularly on models based on the sunshine duration and clearness index. The data used for the calibration of the models were collected during a period of 4 yr, between November 2008 and October 2012, at the Transilvania University of Brasov. The testing and validation of the models was carried out using data from the online SoDa database for Brasov for the year 2005. Different statistical error tests were applied to evaluate the accuracy of the models. The predicted values are also compared with values from three other known models concerning the global and diffuse solar radiation. A new mixed model was developed for the estimation of monthly average daily global horizontal solar radiation. The data processing was performed by means of a real-time interface developed with LabVIEW graphical programming language. The parameters taken into account were the relative sunshine, the clearness index, the extraterrestrial radiation, the latitude and the longitude. The methodology is simple and effective and may be applied for any region. Its effectiveness was proven through comparison with global models.

1.
J. A.
Duffie
and
W. A.
Beckman
,
Solar Engineering of Thermal Processes
, 3rd ed. (
John Wiley & Sons, Inc.
,
New York
,
2006
).
2.
K.
Ulgen
and
A.
Hepbasli
, “
Solar radiation models. Part 1: A review
,”
Energy Sources
26
,
507
520
(
2004
).
3.
B.
Sørensen
,
Renewable Energy
, 3rd ed. (
Elsevier, Inc.
,
2004
).
4.
T.
Muneer
,
Solar Radiation and Daylight Models
(
Elsevier, Inc.
,
2004
).
5.
D. H. W.
Li
and
J. C.
Lam
, “
Solar heat gain factors and the implications for building designs in subtropical regions
,”
Energy Build.
32
,
47
55
(
2000
).
6.
R.
Kumar
and
L.
Umanand
, “
Estimation of global radiation using clearness index model for sizing photovoltaic system
,”
Renewable Energy
30
,
2221
2233
(
2005
).
7.
Z.
Lu
,
R. H.
Piedrahita
, and
C. D. S.
Neto
, “
Generation of daily and hourly solar radiation values for modeling water quality in aquaculture ponds
,”
Trans. ASAE
41
,
1853
1859
(
1998
).
8.
See http://eosweb.larc.nasa.gov/sse for solar radiation databases.
9.
See http://re.jrc.ec.europa.eu/pvgis/imaps/index.htm for solar radiation databases.
10.
See http://meteonorm.com solar radiation databases.
11.
K. A.
Joudi
and
Q. J.
Abdul-Ghafour
, “
Development of design charts for solar cooling systems. Part I: Computer simulation for a solar cooling system and development of solar cooling design charts
,”
Energy Convers. Manage.
44
,
313
39
(
2003
).
12.
L. T.
Wong
and
W. K.
Chow
, “
Solar radiation model
,”
Appl. Energy
69
,
191
224
(
2001
).
13.
J. H. S.
Trujillo
, “
Solar performance and shadow behaviour in buildings—Case study with computer modelling of a building in Loranca
,”
Spain, Build. Environ.
33
,
117
130
(
1998
).
14.
T. J.
Cartwright
, “
Here comes the Sun: Solar energy from a flat-plate collector
,” in
Modeling the World in a Spreadsheet-Environmental Simulation on a Microcomputer
(
The Johns Hopkins University Press
,
1993
), pp.
121
144
.
15.
C.
Gueymard
, “
Critical analysis and performance assessment of clear-sky solar-irradiance models using theoretical and measured data
,”
Sol. Energy
51
,
121
138
(
1993
).
16.
H.
Li
,
W.
Ma
,
X.
Wang
, and
Y.
Lian
, “
Estimating monthly average daily diffuse solar radiation with multiple predictors: a case study
,”
Renewable Energy
36
,
1944
1948
(
2011
).
17.
M. J.
Ahmad
and
G. N.
Tiwari
, “
Solar radiation models—A review
,”
Int. J. Energy Res.
35
,
271
290
(
2011
).
18.
M. J.
Ahmad
and
G. N.
Tiwari
, “
Evaluation and comparison of hourly solar radiation models
,”
Int. J. Energy Res.
33
,
538
552
(
2009
).
19.
K.
Bakirci
, “
Models of solar radiation with hours of bright sunshine: A review
,”
Renewable Sustainable Energy Rev.
13
,
2580
2588
(
2009
).
20.
K.
Ulgen
and
A.
Hepbasli
, “
Solar radiation models. Part 2: Comparison and developing new models
,”
Energy Sources
26
,
521
530
(
2004
).
21.
S.
Kalogirou
,
Artificial Intelligence in Energy and Renewable Energy Systems
(
Nova Science Publisher, Inc.
,
2007
).
22.
Z.
Sen
, “
Fuzzy algorithm for estimation of solar irradiation from sunshine duration
,”
Solar Energy
63
,
39
49
(
1998
).
23.
A.
Sözen
,
E.
Arcaklioǧlu
,
M.
Özalp
, and
E. G.
Kanit
, “
Use of artificial neural networks for mapping of solar potential in Turkey
,”
Appl. Energy
77
,
273
286
(
2004
).
24.
R. K.
Tomar
,
N. D.
Kaushika
, and
S. C.
Kaushik
, “
Artificial neural network based computational model for the prediction of direct solar radiation in Indian zone
,”
J. Renewable Sustainable Energy
4
,
063146
(
2012
).
25.
A. A. Pérez
Ponce
,
J. A.
Lazzús
, and
L.
Palma-Chilla
, “
Hybrid neural network-particle swarm method to predict global radiation over the Norte Chico (Chile)
,”
J. Renewable Sustainable Energy
4
,
023108
(
2012
).
26.
I.
Korachagaon
and
V. N.
Bapa
, “
Predicting global solar radiation for South America
,”
J. Renewable Sustainable Energy
4
,
043101
(
2012
).
27.
A. H.
Maghrabi
, “
Parameterization of a simple model to estimate monthly global solar radiation based on meteorological variables, and evaluation of existing solar radiation models for Tabouk, Saudi Arabia
,”
Energy Convers. Manage.
50
,
2754
2760
(
2009
).
28.
K.
Ulgen
and
A.
Hepbasli
, “
Comparison of solar radiation correlations for Izmir, Turkey
,”
Int. J. Energy Res.
26
,
413
430
(
2002
).
29.
D. B.
Ampratwum
and
A. S. S.
Dorvlo
, “
Estimation of solar radiation from the number of sunshine hours
,”
Appl. Energy
63
,
161
167
(
1999
).
30.
W. B. Wan
Nik
,
M. Z.
Ibrahim
,
K. B.
Samo
, and
A. M.
Muzathik
, “
Monthly mean hourly global solar radiation estimation
,”
Sol. Energy
86
,
379
387
(
2012
).
31.
F.
Besharat
,
A. A.
Dehghan
, and
A. R.
Faghih
, “
Empirical models for estimating global solar radiation: A review and case study
,”
Renewable Sustainable Energy Rev.
21
,
798
621
(
2013
).
32.
M.
Bortolini
,
M.
Gamberi
,
A.
Graziani
,
R.
Manzini
, and
C.
Mora
, “
Multi-location model for the estimation of the horizontal daily diffuse fraction of solar radiation in Europe
,”
Energy Convers. Manage.
67
,
208
216
(
2013
).
33.
J. L.
Torres
,
M. De
Blas
,
A.
García
, and
A. de
Francisco
, “
Comparative study of various models in estimating hourly diffuse solar irradiance
,”
Renewable Energy
35
,
1325
1332
(
2010
).
34.
Y.
Jiang
, “
Correlation for diffuse radiation from global solar radiation and sunshine data at Beijing, China
,”
J. Energy Eng.
135
,
107
111
(
2009
).
35.
M. F.
Li
,
H. B.
Liu
,
P. T.
Guo
, and
W.
Wu
, “
Estimation of daily solar radiation from routinely observed meteorological data in Chongqing, China
,”
Energy Convers. Manage.
51
,
2575
2579
(
2010
).
36.
M. S.
Adaramola
, “
Estimating global solar radiation using common meteorological data in Akure, Nigeria
,”
Renewable Energy
47
,
38
44
(
2012
).
37.
A.
Angström
, “
Solar and terrestrial radiation
,”
Q. J. R. Meteorol. Soc.
50
,
121
125
(
1924
).
38.
F.
Ahmad
and
I.
Ulfat
, “
Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan
,”
Turk. J. Phys.
28
,
301
307
(
2004
).
39.
A. A.
El-Sebaii
,
A. A.
Al-Ghamdi
,
F. S.
Al-Hazmi
, and
A.
Faidah
, “
Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia
,”
Energy Policy
37
,
3645
3649
(
2009
).
40.
A.
Soler
, “
Statistical comparison for 77 European stations of 7 sunshine-based models
,”
Sol. Energy
45
,
365
370
(
1990
).
41.
J. K.
Page
, “
The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surface from sunshine records for latitudes 40N–40S
,”
Proc. U. N. Conf. New Sources of Energy
4
(
598
),
378
390
(
1961
).
42.
A.
Soler
, “
Monthly specific Rietveld's correlations
,”
Sol. Wind Technol.
7
,
305
308
(
1990
).
43.
K.
Bakirci
, “
Correlations for estimation of solar radiation on horizontal surface
,”
J. Energy Eng.
134
,
130
134
(
2008
).
44.
A. A.
Elagib
and
M. G.
Mansell
, “
New approaches for estimating global solar radiation across Sudan
,”
Energy Convers. Manage.
41
,
419
434
(
2000
).
45.
C.
Rensheng
,
L.
Shihua
,
K.
Ersi
,
Y.
Jianping
, and
J.
Xibin
, “
Estimating daily global radiation using two types of revised models in China
,”
Energy Convers. Manage.
47
,
865
878
(
2006
).
46.
F. J.
Newland
, “
A study of solar radiation models for the Coastal Region of South China
,”
Sol. Energy
43
,
227
235
(
1989
).
47.
J.
Almorox
and
C.
Hontoria
, “
Global solar radiation estimation using sunshine duration in Spain
,”
Energy Convers. Manage.
45
,
1529
1535
(
2004
).
48.
K.
Bakirci
, “
Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey
,”
Energy
34
,
485
501
(
2009
).
49.
A. M.
Muzathik
,
M. Z.
Ibrahim
,
K. B.
Samo
, and
W. B. Wan
Nik
, “
Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements
,”
Energy
36
,
812
818
(
2011
).
50.
A. K.
Katiyar
and
C. K.
Pandey
, “
A review of solar radiation models—Part I
,”
J. Renewable Energy
2013
,
168048
.
51.
A. A.
El-Sebaii
,
F. S.
Al-Hazmi
,
A. A.
Al-Ghamdi
, and
S. J.
Yaghmour
, “
Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia
,”
Appl. Energy
87
,
568
576
(
2010
).
52.
J.
Boland
,
B.
Ridley
, and
B.
Brown
, “
Models of diffuse solar radiation
,”
Renewable Energy
33
,
575
584
(
2008
).
53.
K. K.
Gopinathan
, “
Computing the monthly mean daily diffuse radiation from clearness index and percent possible sunshine
,”
Sol. Energy
41
,
379
385
(
1988
).
54.
K.
Ulgen
and
A.
Hepbasli
, “
Diffuse solar radiation estimation models for Turkey's big cities
,”
Energy Convers. Manage.
50
,
149
156
(
2009
).
55.
A.
Haydar
,
O.
Balli
, and
A.
Hepbasli
, “
Estimating the horizontal diffuse solar radiation over the Central Anatolia region of Turkey
,”
Energy Convers. Manage.
47
,
2240
2249
(
2006
).
56.
C. A.
Gueymard
, “
The sun's total and spectral irradiance for solar energy applications and solar radiation models
,”
Sol. Energy
76
,
423
453
(
2004
).
57.
S. N.
Kaplanis
, “
New methodologies to estimate the hourly global solar radiation: Comparisons with existing models
,”
Renewable Energy
31
,
781
790
(
2006
).
58.
S.
Kaplanis
and
E.
Kaplani
, “
A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values
,”
Renewable Energy
32
,
1414
1425
(
2007
).
59.
R. J.
Stone
, “
Improved statistical procedure for the evaluation of solar radiation estimation models
,”
Sol. Energy
51
,
289
291
(
1993
).
60.
S.
Younes
,
R.
Claywell
, and
T.
Muneer
, “
Quality control of solar radiation data: present status and proposed new approaches
,”
Energy
30
,
1533
1549
(
2005
).
61.
I.
Moradi
, “
Quality control of global solar radiation using sunshine duration hours
,”
Energy
34
,
1
6
(
2009
).
62.
See http://www.soda-is.com/eng/index.html for solar radiation data—SoDa Database.
63.
H.
Ogelman
,
A.
Ecevit
, and
E.
Tasdemiroglu
, “
A new method for estimating solar radiation from bright sunshine data
,”
Sol. Energy
33
,
619
625
(
1984
).
64.
K.
Zabara
, “
Estimation of the global solar radiation in Greece
,”
Sol. Wind Technol.
3
(
4
),
267
272
(
1986
).
65.
S. M. A.
Ibrahim
, “
Diffuse solar radiation in Cairo, Egypt
,”
Energy Convers. Manage.
25
(
1
),
69
72
(
1985
).
You do not currently have access to this content.