Selection of appropriate electron donors is important for charge transfer and photocatalytic hydrogen (H2) production from water. The influence of different inorganic electron donors (i.e., I, S2−/SO32−, S2−, SO32−, Fe2+, and Ce3+) on H2 production was investigated on the (CuAg)0.15In0.3Zn1.4S2 photocatalyst under visible light. The highest photocatalytic H2 production rates were 1750, 1317, 820, 360, 260, 10 μmol g−1 h−1 with electron donors of 0.2M KI, 0.25M Na2S in combination with 0.35M Na2SO3, 0.25M Na2S, 0.35M Na2SO3, 0.2M FeCl2, and 0.2M Ce2(SO4)3, respectively. I was determined as the most effective electron donor for (CuAg)0.15In0.3Zn1.4S2 photocatalyst, probably because (1) the redox potential of I3/I is relatively more suitable than those of other redox pairs for the charge transfer to valence band and (2) the positive surface charge of the (CuAg)0.15In0.3Zn1.4S2 photocatalyst at the solution pH of 2 facilitates the absorption of I and subsequent reaction with the valence band holes. The effect of the initial I concentrations on the H2 production and the potential reaction routes of I on the photocatalyst were both analyzed to shed light on the reaction mechanisms. This study compared the efficacy of different inorganic electron donors in improving photocatalytic H2 production and provided fundamental insight into the search of appropriate electron donors and the efficient photocatalytic system design.

1.
C. Y.
Chiang
,
M. H.
Chang
,
H. S.
Liu
,
C. Y.
Tai
, and
S.
Ehrman
,
Ind. Eng. Chem. Res.
51
,
5207
(
2012
).
2.
B.
Chai
,
T. Y.
Peng
,
P.
Zeng
,
X. H.
Zhang
, and
X. J.
Liu
,
J. Phys. Chem. C
115
,
6149
(
2011
).
3.
T.
Hisatomi
,
K.
Maeda
,
K.
Takanabe
,
J.
Kubota
, and
K.
Domen
,
J. Phys. Chem. C
113
,
21458
(
2009
).
4.
I.
Tsuji
,
H.
Kato
, and
A.
Kudo
,
Chem. Mater.
18
,
1969
(
2006
).
5.
K.
Maeda
,
R.
Abe
, and
K.
Domen
,
J. Phys. Chem. C
115
,
3057
(
2011
).
6.
S. Y.
Ryu
,
W.
Balcerski
,
T. K.
Lee
, and
M. R.
Hoffmann
,
J. Phys. Chem. C
111
,
18195
(
2007
).
7.
E.
Suzuki
,
Y.
Hayashi
,
Y.
Shimomura
,
S.
Yoshida
,
H.
Usami
,
A.
Nakasa
, and
H.
Fujimatsu
,
J. Chem. Eng. Jpn.
38
,
824
(
2005
).
8.
N.
Shah
,
Y. G.
Wang
,
D.
Panjala
, and
G. P.
Huffman
,
Energy Fuels
18
,
727
(
2004
).
9.
S.
Yossan
,
S.
O.-Thong
, and
P.
Prasertsan
,
Int. J. Hydrogen Energy
37
,
13806
(
2012
).
10.
H.
Park
and
W.
Choi
,
Langmuir
22
,
2906
(
2006
).
11.
J.
Choi
,
S. Y.
Ryu
,
W.
Balcerski
,
T. K.
Lee
, and
M. R.
Hoffmann
,
J. Mater. Chem.
18
,
2371
(
2008
).
12.
T.
Lazarides
,
T.
McCormick
,
P. W.
Du
,
G. G.
Luo
,
B.
Lindley
, and
R.
Eisenberg
,
J. Am. Chem. Soc.
131
,
9192
(
2009
).
13.
W. C.
Lin
,
W. D.
Yang
,
I. L.
Huang
,
T. S.
Wu
, and
Z. J.
Chung
,
Energy Fuels
23
,
2192
(
2009
).
14.
R.
Abe
,
K.
Sayama
, and
H.
Sugihara
,
J. Phys. Chem. B
109
,
16052
(
2005
).
15.
M.
Higashi
,
R.
Abe
,
T.
Takata
, and
K.
Domen
,
Chem. Mater.
21
,
1543
(
2009
).
16.
M.
Ni
,
M. K. H.
Leung
,
D. Y. C.
Leung
, and
K.
Sumathy
,
Renewable Sustainable Energy Rev.
11
,
401
(
2007
).
17.
Y. X.
Li
,
K.
Zhang
,
S. Q.
Peng
,
G. X.
Lu
, and
S. B.
Li
,
J. Mol. Catal. A: Chem.
363-364
,
354
(
2012
).
18.
H.
Liu
,
J.
Yuan
, and
W. F.
Shangguan
,
Energy Fuels
20
,
2289
(
2006
).
19.
L. S.
Al-Mazroai
,
M.
Bowker
,
P.
Davies
,
A.
Dickinson
,
J.
Greaves
,
D.
James
, and
L.
Millard
,
Catal. Today
122
,
46
(
2007
).
20.
A.
Patsoura
,
D. I.
Kondarides
, and
X. E.
Verykios
,
Catal. Today
124
,
94
(
2007
).
21.
A. A.
Nada
,
M. H.
Barakat
,
H. A.
Hamed
,
N. R.
Mohamed
, and
T. N.
Veziroglu
,
Int. J. Hydrogen Energy
30
,
687
(
2005
).
22.
X. L.
Fu
,
J. L.
Long
,
X. X.
Wang
,
D. Y. C.
Leung
,
Z. X.
Ding
,
L.
Wu
,
Z. Z.
Zhang
,
Z. H.
Li
, and
X. Z.
Fu
,
Int. J. Hydrogen Energy
33
,
6484
(
2008
).
23.
T.
Ohno
,
S.
Saito
,
K.
Fujihara
, and
M.
Matsumura
,
Bull. Chem. Soc. Jpn.
69
,
3059
(
1996
).
24.
K.
Maeda
,
M.
Higashi
,
D. L.
Lu
,
R.
Abe
, and
K.
Domen
,
J. Am. Chem. Soc.
132
,
5858
(
2010
).
25.
K.
Lee
,
W. S.
Nam
, and
G. Y.
Han
,
Int. J. Hydrogen Energy
29
,
1343
(
2004
).
26.
N.
Buhler
,
K.
Meier
, and
J. F.
Reber
,
J. Phys. Chem.
88
,
3261
(
1984
).
27.
J. F.
Reber
and
M.
Rusek
,
J. Phys. Chem.
90
,
824
(
1986
).
28.
I.
Tsuji
,
H.
Kato
,
H.
Kobayashi
, and
A.
Kudo
,
J. Am. Chem. Soc.
126
,
13406
(
2004
).
29.
H.
Kato
,
M.
Hori
,
R.
Konta
,
Y.
Shimodaira
, and
A.
Kudo
,
Chem. Lett.
33
,
1348
(
2004
).
30.
G. R.
Bamwenda
and
H.
Arakawa
,
Sol. Energy Mater. Sol. Cells
70
,
1
(
2001
).
31.
G. S.
Zhang
,
W.
Zhang
,
J.
Crittenden
,
Y. S.
Chen
,
D.
Minakata
, and
P.
Wang
,
Chin. J. Catal.
34
,
1926
(
2013
).
32.
G. S.
Zhang
,
W.
Zhang
,
P.
Wang
,
D.
Minakata
,
Y. S.
Chen
, and
J.
Crittenden
,
Int. J. Hydrogen Energy
38
,
1286
(
2013
).
33.
G. S.
Zhang
,
W.
Zhang
,
D.
Minakata
,
P.
Wang
,
Y. S.
Chen
, and
J.
Crittenden
, “
Efficient photocatalytic H2 production using visible-light irradiation and (CuAg)xIn2xZn2(12x)S2 photocatalysts with tunable band gaps
,”
Int. J. Energy Res.
(published online, 2014).
34.
D. H.
Wang
,
L.
Wang
, and
A. W.
Xu
,
Nanoscale
4
,
2046
(
2012
).
35.
I.
Tsuji
,
H.
Kato
, and
A.
Kudo
,
Angew. Chem. Int. Ed.
44
,
3565
(
2005
).
36.
G. S.
Zhang
,
W.
Zhang
,
D.
Minakata
,
Y. S.
Chen
,
J.
Crittenden
, and
P.
Wang
,
Int. J. Hydrogen Energy
38
,
11727
(
2013
).
37.
H. A.
Schwarz
and
B. H. J.
Bielski
,
J. Phys. Chem.
90
,
1445
(
1986
).
38.
M. Q.
Hu
,
Y.
Wang
,
Z. G.
Xiong
,
D. Q.
Bi
,
Y. H.
Zhang
, and
Y. M.
Xu
,
Environ. Sci. Technol.
46
,
9005
(
2012
).
39.
A.
Kudo
and
Y.
Miseki
,
Chem. Soc. Rev.
38
,
253
(
2009
).
40.
X. B.
Chen
,
S. H.
Shen
,
L. J.
Guo
, and
S. S.
Mao
,
Chem. Rev.
110
,
6503
(
2010
).
41.
M.
Gratzel
,
Nature
414
,
338
(
2001
).
42.
M. A.
Butler
and
D. S.
Ginley
,
J. Electrochem. Soc.
125
,
228
(
1978
).
43.
Y.
Xu
and
M. A. A.
Schoonen
,
American Mineralogist
85
,
543
(
2000
).
44.
Y. M.
He
,
L. H.
Zhao
,
Y. J.
Wang
,
H. J.
Lin
,
T. T.
Li
,
X. T.
Wu
, and
Y.
Wu
,
Chem. Eng. J.
169
,
50
(
2011
).
45.
A. L.
Linsebigler
,
G. Q.
Lu
, and
J. T.
Yates
,
Chem. Rev.
95
,
735
(
1995
).
46.
Y.
Li
,
W.
Zhang
,
J. F.
Niu
, and
Y. S.
Chen
,
ACS Nano
6
,
5164
(
2012
).
47.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
Boca Raton
,
2005
),
p
1253
.
48.
H.
Shoichi
,
Y.
Masaharu
,
T.
Satoshi
,
N.
Lei
,
O.
Bunsho
, and
I.
Hiroshi
,
J. Phys. Chem. C
116
,
17458
(
2012
).
49.
L. F.
Wei
,
X. J.
Zheng
,
Z. H.
Zhang
,
Y. J.
Wei
,
B.
Xie
,
M. B.
Wei
, and
X. L.
Sun
,
Int. J. Energy Res.
36
,
75
(
2012
).
50.
Y. X.
Li
,
Y. Z.
Me
,
S. Q.
Peng
,
G. X.
Lu
, and
S. B.
Li
,
Chemosphere
63
,
1312
(
2006
).
You do not currently have access to this content.