Drift is ubiquitous in heliostat fields, and may be caused by diverse geometrical inaccuracies during heliostat installation and operation. This phenomenon is studied for three important primary errors in the present paper: Angular offset in the drive mechanism, pedestal tilt, and canting error. Each error produces characteristic signatures, but there is a diversity of behavior depending on the error parameters and location of the heliostat. The variation of the extent of drift curves is studied as a function of distance, for fixed error parameters. It is found that, in general, this extent is not proportional to distance, except for far heliostats, and depends on a complicated manner on the different parameters involved. Moreover, even though the extent of drift curves becomes proportional to distance for far heliostats, the convergence is very slow, and very variable with the error parameters.

2.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
, “
A review of studies on central receiver solar thermal power plants
,”
Renewable Sustainable Energy Rev.
23
,
12
39
(
2013
).
3.
Berenguel
,
M.
,
Rubio
,
F. R.
,
Valverde
,
A.
,
Lara
,
P. J.
,
Arahal
,
M. R.
,
Camacho
,
E. F.
, and
López
,
M.
, “
An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant
,”
Sol. Energy
76
,
563
575
(
2004
).
4.
Buck
,
R.
and
Teufel
,
E.
, “
Comparison and optimization of heliostat canting methods
,”
J. Sol. Energy Eng.
131
,
011001
(
2009
).
5.
Duffie
,
J. A.
and
Beckman
,
W. A.
,
Solar Engineering of Thermal Processes
4th ed. (
Wiley
,
Hoboken, New Jersey
,
2013
), pp.
13
15
.
6.
Guo
,
M.
,
Wang
,
Z.
,
Zhang
,
J.
,
Sun
,
F.
, and
Zhang
,
X.
, “
Accurate altitude–azimuth tracking angle formulas for a heliostat with mirror–pivot offset and other fixed geometrical errors
,”
Sol. Energy
85
,
1091
1100
(
2011
).
7.
Guo
,
M.
,
Wang
,
Z.
,
Zhang
,
J.
,
Sun
,
F.
, and
Zhang
,
X.
, “
Determination of the angular parameters in the general altitude–azimuth tracking angle formulas for a heliostat with a mirror-pivot offset based on experimental tracking data
,”
Sol. Energy
86
,
941
950
(
2012
).
8.
Hildebrandt
,
A. F.
and
Vant-Hull
,
L. L.
, “
Power with heliostats
,”
Science
197
,
1139
1146
(
1977
).
9.
Iriarte-Cornejo
,
C.
,
Arancibia-Bulnes
,
C. A.
,
Waissman
,
J.
,
Cabanillas
,
R. E.
, and
Estrada
,
C. A.
, “
Dynamic drift compensation for heliostats
,”
in Proceedings of the SolarPACES Congress
, Energy Procedia
2013
.
10.
Jones
,
S. A.
and
Stone
,
K. W.
, “
Analysis of Strategies to improve heliostat tracking at solar two
,” Sandia National Laboratories Technical Report No. SAND99-0092C, Albuquerque, New Mexico,
1999
).
11.
Kribus
,
A.
,
Vishnevetsky
,
I.
,
Yogev
,
A.
, and
Rubinov
,
T.
, “
Closed loop control of heliostats
,”
Energy
29
,
905
913
(
2004
).
12.
Pitz-Paal
,
R.
,
Bayer Botero
,
N.
, and
Steinfeld
,
A.
, “
Heliostat field layout optimization for high-temperature solar thermochemical processing
,”
Solar Energy
85
,
334
343
(
2011
).
13.
Rabl
,
A.
,
Active Solar Collectors and their Applications
(
Oxford University Press
,
New York
,
1985
), p.
115
.
14.
Reda
,
I.
and
Andreas
,
A.
, “
Solar position algorithm for solar radiation applications
,”
Sol. Energy
76
,
577
589
(
2004
).
15.
Riveros-Rosas
,
D.
,
Sánchez-González
,
M.
, and
Estrada
,
C. A.
, “
Three-dimensional analysis of a concentrated solar flux
,”
J. Sol. Energy Eng.
130
,
014503
(
2008
).
16.
Riveros-Rosas
,
D.
,
Herrera-Vázquez
,
J.
,
Pérez-Rábago
,
C. A.
,
Arancibia-Bulnes
,
C. A.
,
Vázquez-Montiel
,
S.
,
Sánchez González
,
M.
,
Granados-Agustín
,
F.
,
Jaramillo
,
O. A.
, and
Estrada
,
C. A.
, “
Optical design of a high radiative flux solar furnace for Mexico
,”
Sol. Energy
84
,
792
800
(
2010
).
17.
Roca
,
L.
,
de la Calle
,
A.
, and
Yebra
,
L. J.
, “
Heliostat-field gain-scheduling control applied to a two-step solar hydrogen production plant
,”
Appl. Energy
103
,
298
305
(
2013
).
18.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
An update on solar central receiver systems, projects, and technologies
,”
J. Sol. Energy Eng.
124
,
98
108
(
2002
).
19.
Säck
,
J.-P.
,
Roeb
,
M.
,
Sattler
,
C.
,
Pitz-Paal
,
R.
, and
Heinzel
,
A.
, “
Development of a system model for a hydrogen production process on a solar tower
,”
Sol. Energy
86
,
99
111
(
2012
).
20.
Salome
,
A.
,
Chhel
,
F.
,
Flamant
,
G.
,
Ferriere
,
A.
, and
Thiery
,
F.
, “
Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower
,”
Sol. Energy
94
,
352
366
(
2013
).
21.
Stone
,
K. W.
and
Jones
,
S. A.
, “
Analysis of solar two heliostat tracking error sources sandia
,” National Laboratories Technical Report No. SAND99-0239C, Albuquerque, New Mexico,
1999
).
22.
Smith
,
E. J.
and
Ho
,
C. K.
, “
Field demonstration of an automated heliostat tracking correction method
,”
Proceedings of the SolarPACES Congress
, Energy Procedia
2013
.
23.
Sun
,
F.
,
Wang
,
Z.
,
Guo
,
M.
,
Bai
,
F.
, and
Xu
,
Z.
, “
Determination of tracking errors with respect to the geometrical errors based on optimization algorithm
,”
Proceedings of the SolarPACES Congress
, Energy Procedia
2013
.
You do not currently have access to this content.