The scope of the present work is the techno-economic study with concern for the environmental issues and the investigation of the viability of an offshore wind farm in the Greek sea area, northeast of the island of Limnos. In the context of this study, the wind data, the suitable location for the installation of the wind turbines beyond nature protected areas, the type of the wind turbines, the losses due to wind turbines interaction, and the visual impact at the respective study areas are analyzed. Moreover, reliable costing models are used and applied, internationally recognized for techno-economic studies of offshore wind farms. Thereafter, the viability of the project is studied through investment benchmarks. This means that specific economic indices are estimated indicating whether the realization of such an investment is viable or not. In conclusion, based on the analysis performed in this study, it is noted that in the Greek archipelago and especially at the island of Limnos, there is a sufficient offshore wind potential at low depths and at relatively short distances from the shore. These circumstances are necessary conditions for the development of offshore wind farms in these areas. Moreover, economic estimations based on current data of grants, taxation, interest rates, etc., showed that the investment is sustainable, having a cost of energy production equal to 87.92 €/MW h.

1.
EWEA, see http://www.ewea.org/fileadmin/ewea_documents/documents/publications/statistics/EWEA_stats_offshore_2011_02.pdf for the European offshore wind industry key 2011 trends and statistics, European Wind Energy Association, 2012; accessed 16 April
2012
.
2.
EWEA, see http://www.ewea.org/fileadmin/ewea_documents/documents/publications/statistics/EWEA_OffshoreStats_July2012.pdf for the European offshore wind industry—Key trends and statistics 1st half 2012, European Wind Energy Association, 2012; accessed 21 August
2012
.
3.
EWEA, see http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/23420_Offshore_report_web.pdf for European offshore wind industry, “Wind in our sails- The coming of Europe's offshore wind energy industry,” European Wind Energy Association, 2012; accessed 16 April
2012
.
4.
The Wind Power, see http://www.thewindpower.net/country_en_15_greece.php for Countries statistics, Greece, 2012; accessed 16 April
2012
.
5.
Eurostat, see http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=ten00081&plugin=1 for primary production of renewable energy in 1000 tons of oil equivalent; accessed 06 December
2013
.
6.
Eurostat, see http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/main_tables for energy statistics; accessed 06 December
2013
.
7.
European Commission, Energy roadmap 2050, December
2011
.
8.
YΠEKA (Ministry of Environment, Energy and Climate Change of Greece), Εθνικóς Ενεργειακóς Σχεδιασμóς, Οδικóς Χάρτης για το 2050, Μάρτιος,
2012
.
9.
P. N.
Botsaris
and
E. I.
Konstantinidis
, “
Feasibility study of offshore wind turbine installation in North Aegean—Thracian Sea
,” in
Proceedings of the 4th International Scientific Conference on Energy and Climate Change
, Athens (
2011
), pp.
100
111
.
10.
See http://natura2000.eea.europa.eu/# for Natura 2000 Viewer; accessed 08 May
2012
.
11.
K.
Lagouvardos
,
V.
Kotroni
,
A.
Koussis
,
H.
Feidas
,
A.
Buzzi
, and
P.
Malguzzi
, “
The meteorological model BOLAM at the National Observatory of Athens: Assessment of two-year operational use
,”
J. Appl. Meteorol.
42
,
1667
1678
(
2003
).
12.
A. R.
Rajai
, “
Optimization of offshore wind farm layouts
,” Master thesis (
DTU, UK
,
2007
).
13.
R.
Barthelmie
,
G.
Larsen
,
S.
Pryor
,
H.
Jørgensen
,
H.
Bergstrom
,
W.
Schlez
,
K.
Rados
,
B.
Lange
,
P.
Vølund
,
S.
Neckelmann
,
S.
Mogensen
,
G.
Schepers
,
T.
Hegberg
,
L.
Folkerts
, and
M.
Magnusson
, “
ENDOW (efficient development of offshore wind farms): Modeling wake and boundary layer interactions
,”
Wind Energy
7
(
3
),
225
245
(
2004
).
14.
G.
Schepers
,
R.
Barthelmie
,
K.
Rados
,
B.
Lange
, and
W.
Schlez
, “
Large off-shore wind farms: Linking wake models with atmospheric boundary layer models
,”
Wind Energy
25
(
5
),
307
316
(
2001
).
15.
L.
Folkerts
,
R.
Barthelmie
,
P.
Sanderhoff
,
F.
Ormel
,
P.
Eecen
, and
O.
Stobbe
, “
Sodar wind velocity measurements of offshore turbines wakes
,”
Wind Eng.
25
(
5
),
301
306
(
2001
).
16.
D.
Khan
and
D.
Infield
, “
Tidal influence on offshore wind fields and resource predictions
,”
Int. J. Environ. Sustainable Dev.
1
,
312
316
(
2002
).
17.
A.
Kusiak
and
Z.
Song
, “
Design of wind farm layout for maximum wind energy capture
,”
Renewable Energy
35
,
685
694
(
2010
).
18.
K. S.
Hansen
,
R.
Barthelmie
,
L. E.
Jensen
, and
A.
Sommer
, “
The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
,”
Wind Energy
15
(
1
),
183
196
(
2012
).
19.
P.
Nielsen
, Offshore wind energy projects feasibility study guidelines, Seawind altener project 4.1030/Z/01-103/2001, ver.3.0, Aalborg, June
2003
.
20.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
, 2nd ed. (
John Wiley & Sons
,
2011
), p.
17
.
21.
N. O.
Jensen
, A note on wind generator interaction, Risø-M-2411, Risø National Laboratory, Denmark, November
1983
.
22.
J.
Ladenburg
and
A.
Dubgaard
, “
Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark
,”
Energy Policy
35
,
4059
4071
(
2007
).
23.
A.
Dimitropoulos
and
A.
Kontoleon
, “
Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands
,”
Energy Policy
37
,
1842
1854
(
2009
).
24.
YΠEKA (Ministry of Environment, Energy and Climate Change of Greece), see http://www.ypeka.gr/LinkClick.aspx?fileticket=95ebrUR7xoo%3D&tabid=546 for visual impact guidelines, 2010; accessed 02 June
2012
.
25.
EMODnet, see http://portal.emodnet-hydrography.eu/ for the pilot portal for bathymetry; accessed 06 November
2013
.
26.
W. E.
De Vries
,
J.
Van der Tempel
,
H.
Carstens
,
K.
Argyriadis
,
P.
Passon
,
T.
Camp
, and
R.
Cutts
, Assessment of bottom-mounted support structure types with conventional design stiffness and installation techniques for typical deep water sites, project up wind, Contract No.: 019945 (SES6), Delft University of Technology, March
2007
.
27.
L.
Fingersh
,
M.
Hand
, and
A.
Laxson
, Wind turbine design cost and scaling model, Technical Report No. NREL/TP-500-40566, National Renewable Energy Laboratory, December
2006
.
28.
E.
Uraz
, “
Offshore wind turbine transportation and installation analysis
,” Master thesis (
Gotland University
,
2011
).
29.
J.
Kowal
,
A.
Lombardozzi
,
L.
Borgie
, and
B.
Hergt
, Producer price indexes detailed report, Data for February
2012
, U.S. Department of Labour, U.S. Bureau of Labor Statistics, Vol. 16, No. 2.
30.
U.S. Bureau of Labor Statistics (BLS), see http://data.bls.gov/timeseries/PCU332991332991?data_tool=XGtable, for Producer Price Indices (PPI), 2012; accessed 25 May
2012
.
31.
U.S. Bureau of Labor Statistics (BLS), see http://data.bls.gov/timeseries/WPU101507, for Producer Price Indices (PPI), 2012; accessed 25 May
2012
.
32.
U.S. Bureau of Labor Statistics (BLS), see http://data.bls.gov/timeseries/NDUBHVY–BHVY for Producer Price Indices (PPI), 2012; accessed 25 May
2012
.
33.
Douglas Westwood Ltd (DWL), Offshore wind assessment for Norway, final report, the research council of Norway (RCN), 24 March
2010
.
34.
DTI & Ofgem, A security standard for offshore transmission networks, report of a consultation held by DTI and Ofgem, January
2007
, London, England.
35.
H.
Brakelmann
, Bipolare HVAC- und HVDC-Hochleistungs-Übertragungssysteme met VPE-isolierten See- und Landkabeln,
2007
, University of Duisburg-Essen, Germany.
36.
DTI, Study of the costs of offshore wind generation, URN Nr 07/779, UK,
2007
.
37.
D.
Schoenmakers
, “
Optimization of the coupled grid connection of offshore wind farms
,” Master thesis (
TU Delft
,
2008
).
38.
Greek Government Law Nr.4030, Article 42, paragraph 20, 25 November
2011
.
39.
E.
Firtin
,
O.
Guler
, and
S. A.
Akdag
, “
Investigation of wind shear coefficients and their effect on electrical energy generation
,”
Appl. Energy
88
,
4097
4105
(
2011
).
40.
C.
Draxl
,
A. N.
Hahmann
,
A.
Peña
, and
G.
Giebel
, “
Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes
,”
Wind Energy
17
,
39
55
(
2014
).
41.
J. F.
Newman
and
P. M.
Klein
, “
The impacts of atmospheric stability on the accuracy of wind speed extrapolation methods
,”
Resources
3
,
81
85
(
2014
).
42.
D.
Muñoz-Esparza
,
B.
Cañadillas
,
T.
Neumann
, and
J.
van Beeck
, “
Turbulent fluxes, stability and shear in the offshore environment: Mesoscale modeling and field observations at FINO1
,”
J. Renewable Sustainable Energy
4
,
063136
(
2012
).
43.
C. B.
Hasager
,
D.
Stein
,
M.
Courtney
,
A.
Peña
,
T.
Mikkelsen
,
M.
Stickland
, and
A.
Oldroyd
, “
Hub height ocean winds over the North sea observed by the NORSEWInD Lidar array: Measuring techniques, quality control and data management
,”
Remote Sens.
5
,
4280
4303
(
2013
).
You do not currently have access to this content.