Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also, the optimal scheduling of MGs will result in reliable and economical operation of distribution system. In this paper, an operational planning model of a MG which considers multiple demand response programs is proposed. In the proposed approach, all types of loads can participate in demand response programs which will be considered in either energy or reserve scheduling. Also, the renewable distributed generation uncertainty is covered by reserve provided by both Distributed Generations (DGs) and responsive loads. The novelty of this paper is the demand side participation in energy and reserve scheduling, simultaneously. Furthermore, the energy and reserve scheduling is proposed for day-ahead and real-time. The proposed model was tested on a typical MG system and the results show that running demand response programs will reduce total operation cost of MG and cause more efficient use of resources.

1.
P.
Siano
,
Renewable Sustainable Energy Rev.
30
,
461
(
2014
).
2.
S. H.
Falsafi
,
A.
Zakariazadeh
, and
S.
Jadid
,
Energy
64
,
853
(
2014
).
3.
C.
Chen
,
S.
Duan
, and
T.
Cai
,
Smart IET Renewable Power Gener.
5
,
258
(
2011
).
4.
A.
Tsikalakis
and
N.
Hatziargyriou
,
IEEE Trans. Energy Convers.
23
,
241
(
2008
).
5.
M.
Faisal
and
K.
Heikki
,
Int. J. Electr. Power Energy Syst.
32
,
398
(
2010
).
6.
M. E.
Khodayar
,
M.
Barati
, and
M.
Shahidehpour
,
Integr. IEEE Trans Smart Grid
3
,
1997
(
2012
).
7.
M.
Wang
and
H. B.
Gooi
,
IEEE Trans. Power Syst.
26
,
1164
(
2011
).
8.
H.
Kanchev
,
D.
Lu
,
F.
Colas
,
V.
Lazarov
, and
B.
Francois
,
IEEE Trans. Ind. Electron.
58
,
4583
(
2011
).
9.
X.
Guan
,
Z.
Xu
, and
Q.
Jia
,
IEEE Trans. Smart Grid
1
,
243
(
2010
).
10.
A. H.
Mohsenianrad
and
A.
Leongarcian
,
IEEE Trans. Smart Grid
1
,
120
(
2010
).
11.
A. H.
Mohsenianrad
,
V.
Wong
,
J.
Jatskevich
,
R.
Schober
, and
A.
Leongarcia
,
IEEE Trans. Smart Grid
1
,
320
(
2010
).
12.
S. M.
Hakimi
and
S. M.
Moghaddas-Tafreshi
,
J. Renewable Sustainable Energy
5
,
033112
(
2013
).
13.
T.
Logenthiran
and
D.
Srinivasan
,
J. Renewable Sustainable Energy
4
,
013116
(
2012
).
14.
E.
Alvarez
,
A. M.
Campos
, and
A. J.
Gutiérrez-Trashorras
,
J. Renewable Sustainable Energy
4
,
033101
(
2012
).
15.
S.
Kahrobaee
,
R. A.
Rajabzadeh
,
L. K.
Soh
, and
S.
Asgarpoor
,
IEEE Trans. Smart Grid
4
,
659
(
2013
).
16.
N.
Gatsis
and
G. B.
Giannakis
,
IEEE Trans. Smart Grid
3
,
770
(
2012
).
17.
M.
Tasdighi
,
H.
Ghasemi
, and
A.
Rahimi-Kian
,
IEEE Trans. Smart Grid
5
,
349
(
2014
).
18.
Y.
Huang
,
S.
Mao
, and
R. M.
Nelms
,
IEEE Trans. Smart Grid
5
,
270
(
2014
).
19.
Assessment of demand response and advanced metering, FERC, Staff Report, Docket No. AD06-2, August 7,
2006
.
20.
A.
Zakariazadeh
,
S.
Jadid
, and
P.
Siano
,
Energy Convers. Manage.
78
,
151
(
2014
).
21.
R. J.
Yinger
, Behavior of capstone and honeywell micro turbine generators during load changes,
Southern California Edison
, Technical Report No. LBNL-49095, July
2001
.
22.
J. E.
Larmine
and
A.
Dicks
,
Fuel Cell Systems Explained
, 2nd ed. (
Wiley
,
New York, USA
,
2003
).
23.
R. E.
Rosenthal
,
GAMS A User's Guide
(
GAMS Development Corporation
,
Washington, DC
,
2008
).
24.
Office of Energy Efficiency, Natural resources Canada
, energy consumption of household appliances shipped in Canada, Report No. M141-16/2005, December
2005
.
You do not currently have access to this content.