Co-B nanoparticles are deposited on graphene sheets by simultaneous chemical reduction of Co+2 and graphite oxides using NaBH4 as the reducing agent. The reduced Co−B/graphene nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The results show that after reduction, not only considerable amount of functional groups has been removed but also exhibited formation of Co-B alloy on the graphene sheets. The catalytic activity of nanocomposites was investigated by the hydrolysis of NaBH4 in aqueous solution. Graphene support material greatly enhances the hydrolysis of NaBH4 with respect to graphite and active carbon supports, and chemical reduced graphene sheets can readily form stable aqueous colloids through electrostatic stabilization. The present method is promising for the synthesis of effective supported catalysts for hydrolysis of NaBH4.

1.
Y.
Zhao
,
Z.
Ning
,
J.
Tian
 et al, “
Hydrogen generation hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co-Mo-Pd-B amorphous catalyst with efficient catalytic properties
,”
J. Power Sources
207
,
120
126
(
2012
).
2.
A.
Zuttel
, “
Materials for hydrogen storage
,”
Mater. Today
6
(
9
),
24
33
(
2003
).
3.
L.
Schlapbach
and
A.
Zuttel
, “
Hydrogen-storage materials for mobile applications
,”
Nature
414
,
353
358
(
2001
).
4.
K.
Atkinson
,
S.
Roth
,
M.
Hirscher
, and
W.
Grunwald
, “
Carbon nanostructures: An efficient hydrogen storage medium for fuel cells
,”
Fuel Cells Bull.
4
(
38
),
9
12
(
2001
).
5.
H. L.
Li
,
M.
Eddaoudi
,
M.
O'Keeffe
, and
O. M.
Yaghi
, “
Design and synthesis of an exceptionally stable and highly porous metal-organic framework
,”
Nature
402
,
276
279
(
1999
).
6.
J.
Liang
,
Y.
Li
,
Y.
Huang
 et al, “
Sodium borohydride hydrolysis on highly efficient Co-B/Pd catalysts
,”
Int. J. Hydrogen Energy
33
,
4048
4054
(
2008
).
7.
N.
Patel
,
G.
Guella
,
A.
Kale
,
A.
Miotello
,
B.
Patton
 et al, “
Thin films of Co-B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions
,”.
Appl. Catal., A
323
,
18
24
(
2007
).
8.
A. M.
Ozerova
and
O. A.
Bulavchenko
, “
Cobalt boride catalysts for hydrogen storage systems based on NH3BH3 and NaBH4
,”
Kinet. Catal.
53
(
4
),
511
520
(
2012
).
9.
Y.
Liang
,
H.-B.
Dai
,
L.-P.
Ma
 et al, “
Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst
,”
Int. J. Hydrogen Energy
35
,
3023
3028
(
2010
).
10.
G.
Guella
,
C.
Zanchetta
,
B.
Patton
 et al, “
New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from B-11 NMR measurements
,”
J. Phys. Chem. B
110
,
17024
17033
(
2006
).
11.
H. I.
Schlesinger
,
H. C.
Brown
,
A. E.
Finholt
,
J. R.
Gilbreath
,
H. R.
Hockstra
, and
E. K.
Hyde
, “
New developments in the chemistry of diborane and the borohydrides. IX. Sodium borohydride, its hydrolysis and its use as a reducing agent and in generation og hydrogen
,”
J. Am. Chem. Soc.
75
,
215
219
(
1953
).
12.
A.
Levy
,
J. B.
Brown
, and
C. J.
Lyons
, “
Catalyzed hydrolysis of sodium borohydride
,”
Ind. Eng. Chem. Res.
52
,
211
214
(
1960
).
13.
J. A.
Gardiner
and
J. W.
Collat
, “
Kinetics of the stepwise catalysis of tetrahydroborate ion
,”
J. Am. Chem. Soc.
87
,
1692
1700
(
1965
).
14.
K. A.
Holbrook
and
P. J.
Twist
, “
Hydrolysis of the borohydride ion catalysed by metal-boron alloys
,”
J. Chem. Soc. A
1971
,
890
894
.
15.
S. U.
Jeong
,
R. K.
Kim
,
E. A.
Cho
,
H. J.
Kim
,
S. W.
Nam
,
I. H.
Oh
 et al, “
A study on hydrogen generation from NaBH4 solution using the high-performance Co–B catalyst
,”
J. Power Sources
144
,
129
134
(
2005
).
16.
B. H.
Liu
,
Z. P.
Li
, and
S.
Suda
, “
Nickel and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride
,”
J. Alloys Compd.
415
,
288
293
(
2006
).
17.
S. U.
Jeong
,
E. A.
Cho
,
S. W.
Nam
,
I. H.
Oh
,
U. H.
Jung
, and
S. H.
Kim
, “
Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali NaBH4 solution
,”
Int. J. Hydrogen Energy
32
,
1749
1754
(
2007
).
18.
J.
Lee
,
K. Y.
Kong
,
C. R.
Jung
 et al, “
A structured Co-B catalyst for hydrogen extraction from NaBH4 solution
,”
Catal. Today
120
,
305
310
(
2007
).
19.
R.
Fernandes
,
N.
Patel
, and
A.
Miotello
, “
Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co-B amorphous catalyst
,”
Appl. Catal., B
92
,
68
74
(
2009
).
20.
J.
Zhao
,
H.
Ma
, and
J.
Chen
, “
Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts
,”
Int. J. Hydrogen Energy
32
,
4711
4716
(
2007
).
21.
W.
Ye
,
H.
Zhang
,
D.
Xu
 et al, “
Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst
,”
J. Power Sources
164
,
544
548
(
2007
).
22.
P.
Krishnan
,
S. G.
Advani
, and
A. K.
Prasad
, “
Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation
,”
Appl. Catal., B
86
,
137
144
(
2009
).
23.
J. W.
Jaworski
,
D.
Kim
,
K.
Jung
,
S.
Kim
 et al, “
Surface modification of hydroxyapatite for hydrogen generation
,”
J. Colloid Interface Sci.
358
,
598
603
(
2011
)
24.
Q.
Zhuo
, “
Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst
,”
Carbon
52
,
559
564
(
2013
).
25.
F.
Zhang
and
C.
Hou
, “
Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation
,”
Mater. Chem. Phys.
135
,
826
831
(
2012
).
26.
S.
Stankovic
and
D. A.
Dikin
, “
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
,”
Carbon
45
,
1558
1565
(
2007
).
27.
C. C.
Chien
and
K. T.
Jeng
, “
Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts
,”
Mater. Chem. Phys.
99
,
80
87
(
2006
).
28.
W. S.
Hummers
and
R. E.
Offerman
, “
Preparation of graphitic oxide
,”
J. Am. Chem. Soc.
80
(
6
),
1339
(
1958
).
29.
S.
Brain
,
P. V.
Kamat
, and
V.
Prashant
, “
Disassembly, reassembly, and photoelectrochemistry of etched TiO2 nanotubes
,”
J. Phys. Chem. C
113
,
17967
(
2009
).
30.
H.-J.
Shin
,
K. K.
Kim
,
A.
Benayad
 et al, “
Efficient reduction of graphite oxide by sodium borohydrilde and its effect on electrical conductance
,”
Adv. Funct. Mater.
19
,
1987
1992
(
2009
).
31.
C.-F.
Chang
,
D. T.
Quang
, and
J.-R.
Chen
, “
Graphene as excellent support for rapid and efficient near infrared-assisted tryptic proteolysis
,”
Colloids Surf., B
104
,
221
228
(
2013
).
32.
T.
Szabo
,
O.
Berkesi
,
P.
Forgo
,
K.
Josepovits
,
Y.
Snakis
,
D.
Petridis
, and
I.
Dekany
, “
Evolution of surface functional groups in a series of progressively oxidized graphite oxides
,”
Chem. Mater.
18
,
2740
2749
(
2006
).
33.
C.
Hontorialucas
,
A. J.
Lopezpeinado
,
J. D. D.
Lopezgonzalez
,
M. L.
Rojascervantes
, and
R. M.
Martinaranda
, “
Study of oxygen-containing groups in a series of graphite oxide: Physical and chemical characterization
,”
Carbon
33
,
1585
1592
(
1995
).
34.
Y.
Xu
,
H.
Bai
,
G.
Lu
 et al, “
Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets
,”
J. Am. Chem. Soc.
130
,
5856
5857
(
2008
).
35.
V.
Chandra
and
K. S.
Kim
, “
Highly selective adsorption of Hg+2 by a polypyrrole-reduced graphene oxide composite
,”
Chem. Commun.
47
,
3942
3944
(
2011
).
36.
X.
Dongyan
,
D.
Ping
,
G.
Qingjie
, and
Y.
Xuehai
, “
Improved hydrogen generation from alkaline NaBH4 solution using cobalt catalysts supported on modified activated carbon
,”
Int. J. Hydrogen Energy
33
,
7371
7377
(
2008
).
37.
Q.
Zhuo
,
J.
Gao
,
M.
Peng
 et al, “
Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst
,”
Carbon
52
,
559
564
(
2013
).
38.
I.
Alstrup
,
I.
Chorkendorff
,
R.
Candia
,
B. S.
Clausen
, and
H.
Topsoe
, “
A combined X-ray photoelectron and mossbuer emission-spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts
,”
J. Catal.
77
,
397
409
(
1982
).
39.
A. B.
Mandale
,
S.
Badrinarayanan
,
S. K.
Date
, and
A. P. B.
Sinha
, “
Photoelectron-spectroscopic study of nickel, manganese and cobalt selenides
,”
J. Electron Spectrosc. Relat. Phenom.
33
,
61
72
(
1984
).
40.
J.-M.
Yan
,
X.-B.
Zhang
,
H.
Shioyama
 et al, “
Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles
,”
J. Power Sources
195
,
1091
1094
(
2010
).
41.
B. S.
Kwak
,
J.
Kim
, and
M.
Kang
, “
Hydrogen production from ethanol steam reforming over core-shell structured NiOxOy-, FexOy-, and CoxOy-Pd catalysts
,”
Int. J. Hydrogen Energy
35
,
11829
11843
(
2010
).
42.
A.
Galtayries
and
J.
Grimblot
, “
Formation and electronic properties of oxide and sulphide films of Co, Ni, and Mo studied by XPS
,”
J. Electron Spectrosc. Relat. Phenom.
98–99
,
267
275
(
1999
).
43.
R.
Fernandes
,
N.
Patel
,
A.
Miotello
, and
M.
Filippi
, “
Studies on catalytic behavior of Co-Ni-B in hydrogen production by hydrolysis of NaBH4
,”
J. Mol. Catal. A: Chem.
298
,
1
6
(
2009
).
44.
H.
Li
,
H. X.
Li
,
W. L.
Dai
 et al, “
XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties
,”
Appl. Surf. Sci.
152
,
25
34
(
1999
).
45.
H.
Li
,
W.
Wang
, and
H.
Li
, “
Crystallization deactivation of Ni-P/SiO2 amorphous catalyst and the stabilizing effect of silica support on the Ni-P amorphous structure
,”
J. Catal.
194
,
211
221
(
2000
).
46.
S.
Yoshida
,
H.
Yamashite
,
T.
Funakabi
, and
T.
Yoezawa
, “
Mono-, di-, and trimethylbenzenes over nickel catalysts supported on porous glass
,”
J. Chem. Soc., Faraday Trans.
80
,
1435
1446
(
1984
).
47.
S.
Brain
and
P. V.
Kamat
, “
Electrocatalytically active graphene-platinum nanocomposites. Role of 2-d carbon support in pem fuel cells
,”
J. Phys. Chem. C
113
,
7990
(
2009
).
48.
D.
Li
,
M. B.
Muller
,
S.
Gilje
,
R. B.
Kaner
, and
G. G.
Wallace
, “
Processable aqueous dispersions of graphene nanosheets
,”
Nat. Nanotechnol.
3
,
101
105
(
2008
).
49.
S.
Sharma
,
A.
Ganguly
,
P.
Papakonstantinou
,
X. P.
Miao
 et al, “
Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol
,”
J. Phys. Chem. C
114
,
19459
19466
(
2010
).
50.
Q.
Jian-Ding
,
W.
Guo-Chong
, and
L.
Ru-Ping
, “
Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells
,”
J. Phys. Chem. C
115
,
15639
15645
(
2011
).
51.
L.
Yongjie
and
G.
Wei
, “
Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation
,”
Carbon
48
,
1124
1130
(
2010
).
52.
D. H.
Everett
,
Basic Principles of Colloid Science
(
The Royal Society of Chemistry
,
London
,
1988
).
You do not currently have access to this content.