In this paper, a nonlinear symbolic regression technique using an evolutionary algorithm known as multi-gene genetic programming (MGGP) is applied for a data-driven modelling between the dependent and the independent variables. The technique is applied for modelling the measured global solar irradiation and validated through numerical simulations. The proposed modelling technique shows improved results over the fuzzy logic and artificial neural network (ANN) based approaches as attempted by contemporary researchers. The method proposed here results in nonlinear analytical expressions, unlike those with neural networks which is essentially a black box modelling approach. This additional flexibility is an advantage from the modelling perspective and helps to discern the important variables which affect the prediction. Due to the evolutionary nature of the algorithm, it is able to get out of local minima and converge to a global optimum unlike the back-propagation (BP) algorithm used for training neural networks. This results in a better percentage fit than the ones obtained using neural networks by contemporary researchers. Also a hold-out cross validation is done on the obtained genetic programming (GP) results which show that the results generalize well to new data and do not over-fit the training samples. The multi-gene GP results are compared with those obtained using its single-gene version and also the same with four classical regression models in order to show the effectiveness of the adopted approach.

1.
M.
Rizwan
,
M.
Jamil
, and
D.
Kothari
, “
Generalized neural network approach for global solar energy estimation in India
,”
IEEE Trans. Sustainable Energy
3
(
3
),
576
584
(
2012
).
2.
M.
Santamouris
,
G.
Mihalakakou
,
B.
Psiloglou
,
G.
Eftaxias
, and
D.
Asimakopoulos
, “
Modeling the global solar radiation on the Earth's surface using atmospheric deterministic and intelligent data-driven techniques
,”
J. Climate
12
(
10
),
3105
3116
(
1999
).
3.
J. R.
Koza
,
Genetic Programming II: Automatic Discovery of Reusable Programs
(
MIT Press
,
1994
).
4.
A. H.
Gandomi
,
X.-S.
Yang
,
S.
Talatahari
, and
A. H.
Alavi
,
Metaheuristic Applications in Structures and Infrastructures
(
Elsevier
,
2013
), access online.
5.
X.
Yang
,
A.
Gandomi
,
S.
Talatahari
, and
A.
Alavi
,
Metaheuristics in Water Resources, Geotechnical and Transportation Engineering
(
Elsevier
,
2012
).
6.
D. P.
Searson
,
D. E.
Leahy
, and
M. J.
Willis
, “
GPTIPS: An open source genetic programming toolbox for multigene symbolic regression
,”
International Multi-Conference of Engineers and Computer Scientists 2010
,
2010
.
7.
A. H.
Gandomi
and
A. H.
Alavi
, “
A new multi-gene genetic programming approach to nonlinear system modeling. Part I: Materials and structural engineering problems
,”
Neural Comput. Appl.
21
(
1
),
171
187
(
2012
).
8.
A. H.
Gandomi
and
A. H.
Alavi
, “
A new multi-gene genetic programming approach to non-linear system modeling. Part II: Geotechnical and earthquake engineering problems
,”
Neural Comput. Appl.
21
(
1
),
189
201
(
2012
).
9.
E. S.
Mostafavi
,
S. S.
Ramiyani
,
R.
Sarvar
,
H. I.
Moud
, and
S. M.
Mousavi
, “
A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran
,”
Energy
49
,
204
210
(
2013
).
10.
A.
Mani
,
Handbook of Solar Radiation: Data for India 1980
(
Books and Periodicals Agency, BP-10032
,
1981
), Vol.
1
, p.
498
.
11.
A.
Mellit
,
M.
Benghanem
,
A. H.
Arab
, and
A.
Guessoum
, “
An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: Application for isolated sites in Algeria
,”
Renewable Energy
30
(
10
),
1501
1524
(
2005
).
12.
A.
Mellit
,
M.
Benghanem
,
A. H.
Arab
, and
A.
Guessoum
, “
A simplified model for generating sequences of global solar radiation data for isolated sites: Using artificial neural network and a library of Markov transition matrices approach
,”
Solar Energy
79
(
5
),
469
482
(
2005
).
13.
A.
Mellit
,
M.
Benghanem
, and
S. A.
Kalogirou
, “
An adaptive wavelet-network model for forecasting daily total solar-radiation
,”
Appl. Energy
83
(
7
),
705
722
(
2006
).
14.
A.
Mellit
,
H.
Eleuch
,
M.
Benghanem
,
C.
Elaoun
, and
A. M.
Pavan
, “
An adaptive model for predicting of global, direct and diffuse hourly solar irradiance
,”
Energy Convers. Manage.
51
(
4
),
771
782
(
2010
).
15.
M.
Behrang
,
E.
Assareh
,
A.
Noghrehabadi
, and
A.
Ghanbarzadeh
, “
New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique
,”
Energy
36
(
5
),
3036
3049
(
2011
).
16.
G.
Reikard
, “
Predicting solar radiation at high resolutions: A comparison of time series forecasts
,”
Sol. Energy
83
(
3
),
342
349
(
2009
).
17.
M. A.
Mohandes
, “
Modeling global solar radiation using Particle Swarm Optimization (PSO)
,”
Sol. Energy
86
(
11
),
3137
3145
(
2012
).
18.
Z.
Sen
, “
Fuzzy algorithm for estimation of solar irradiation from sunshine duration
,”
Sol. Energy
63
(
1
),
39
49
(
1998
).
19.
A.
Sfetsos
and
A.
Coonick
, “
Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques
,”
Sol. Energy
68
(
2
),
169
178
(
2000
).
20.
E.
Tulcan-Paulescu
and
M.
Paulescu
, “
Fuzzy modelling of solar irradiation using air temperature data
,”
Theor. Appl. Climatol.
91
(
1
),
181
192
(
2008
).
21.
R. S.
Boata
and
P.
Gravila
, “
Functional fuzzy approach for forecasting daily global solar irradiation
,”
Atmos. Res.
112
,
79
88
(
2012
).
22.
S. A.
Kalogirou
, “
Applications of artificial neural-networks for energy systems
,”
Appl. Energy
67
(
1
),
17
35
(
2000
).
23.
M.
Mohandes
,
S.
Rehman
, and
T.
Halawani
, “
Estimation of global solar radiation using artificial neural networks
,”
Renewable Energy
14
(
1
),
179
184
(
1998
).
24.
M.
Mohandes
,
A.
Balghonaim
,
M.
Kassas
,
S.
Rehman
, and
T.
Halawani
, “
Use of radial basis functions for estimating monthly mean daily solar radiation
,”
Sol. Energy
68
(
2
),
161
168
(
2000
).
25.
K.
Reddy
and
M.
Ranjan
, “
Solar resource estimation using artificial neural networks and comparison with other correlation models
,”
Energy Convers. Manage.
44
(
15
),
2519
2530
(
2003
).
26.
M.
Benghanem
,
A.
Mellit
, and
S.
Alamri
, “
ANN-based modelling and estimation of daily global solar radiation data: A case study
,”
Energy Convers. Manage.
50
(
7
),
1644
1655
(
2009
).
27.
S.
Alam
,
S.
Kaushik
, and
S.
Garg
, “
Assessment of diffuse solar energy under general sky condition using artificial neural network
,”
Appl. Energy
86
(
4
),
554
564
(
2009
).
28.
M.
Behrang
,
E.
Assareh
,
A.
Ghanbarzadeh
, and
A.
Noghrehabadi
, “
The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data
,”
Sol. Energy
84
(
8
),
1468
1480
(
2010
).
29.
M.
Abdulazeez
, “
Artificial neural network estimation of global solar radiation using meteorological parameters in Gusau, Nigeria
,”
Arch. Appl. Sci. Res.
3
(
2
),
586
595
(
2011
).
30.
A. K.
Yadav
and
S.
Chandel
, “
Artificial neural network based prediction of solar radiation for Indian stations
,”
Int. J. Comput. Appl.
50
(
9
),
1
4
(
2012
).
31.
V.
Sivamadhavi
and
R. S.
Selvaraj
, “
Prediction of monthly mean daily global solar radiation using Artificial Neural Network
,”
J. Earth Syst. Sci.
121
(
6
),
1501
1510
(
2012
).
32.
G.
Notton
,
C.
Paoli
,
S.
Vasileva
,
M. L.
Nivet
,
J.-L.
Canaletti
, and
C.
Cristofari
, “
Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks
,”
Energy
39
(
1
),
166
179
(
2012
).
33.
Y.
Eissa
,
P. R.
Marpu
,
I.
Gherboudj
,
H.
Ghedira
,
T. B.
Ouarda
, and
M.
Chiesa
, “
Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images
,”
Sol. Energy
89
,
1
16
(
2013
).
34.
R.
Kumar
, “
Solar radiation estimation using artificial neural network: A review
,”
Asian J. Contemp. Sci.
1
,
12
17
(
2012
).
35.
Y.
Jiang
, “
Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models
,”
Energy
34
(
9
),
1276
1283
(
2009
).
36.
G.
Landeras
,
J. J.
López
,
O.
Kisi
, and
J.
Shiri
, “
Comparison of Gene Expression Programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain)
,”
Energy Convers. Manage.
62
,
1
13
(
2012
).
37.
H.
Shavandi
and
S. S.
Ramiyani
, “
A linear genetic programming approach for the prediction of solar global radiation
,”
Neural Comput. Appl.
23
,
1197
1204
(
2013
).
38.
J.
Koza
and
R.
Poli
,
Genetic Programming, Search Methodologies
, edited by
E. K.
Burke
and
G.
Kendall
(
Springer-Verlag
,
New York
,
2005
), pp.
127
164
.
39.
D. A.
Augusto
and
H. J. C.
Barbosa
, “
Symbolic regression via genetic programming
,” in
Proceedings of Sixth Brazilian Symposium on Neural Networks
,
2000
, pp.
173
178
.
40.
R.
Poli
,
W. B.
Langdon
, and
N. F.
McPhee
,
A Field Guide to Genetic Programming
(
Lulu Enterprises UK Ltd.
,
2008
).
41.
K.
Stanislawska
,
K.
Krawiec
, and
Z. W.
Kundzewicz
, “
Modeling global temperature changes with genetic programming
,”
Comput. Math. Appl.
64
(
12
),
3717
3728
(
2012
).
42.
S.
Luke
and
L.
Panait
, “
A comparison of bloat control methods for genetic programming
,”
Evol. Comput.
14
(
3
),
309
344
(
2006
).
43.
V.
Badescu
, “
Correlations to estimate monthly mean daily solar global irradiation: Application to Romania
,”
Energy
24
(
10
),
883
893
,
1999
.
44.
J. A.
Duffie
and
W. A.
Beckman
, “
Solar engineering of thermal processes
,”
NASA STI/Recon Tech. Rep. A
81
,
16591
(
1980
).
45.
A.
Angstrom
, “
Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation
,”
Q.J.R. Meteorol. Soc.
50
(
210
),
121
126
(
1924
).
46.
J.
Prescott
, “
Evaporation from a water surface in relation to solar radiation
,”
Trans. Roy. Soc. Aust.
64
,
114
125
(
1940
).
47.
J.
Sabbagh
,
A.
Sayigh
, and
E.
El–Salam
, “
Estimation of the total solar radiation from meteorological data
,”
Sol. Energy
19
(
3
),
307
311
(
1977
).
48.
A.
Sözen
,
E.
Arcaklioglu
, and
M.
Özalp
, “
Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data
,”
Energy Convers. Manage.
45
(
18
),
3033
3052
(
2004
).
49.
A.
Paliatsos
,
H.
Kambezidis
, and
A.
Antoniou
, “
Diffuse solar irradiation at a location in the Balkan Peninsula
,”
Renewable Energy
28
(
13
),
2147
2156
(
2003
).
50.
J.
Kaldellis
and
A.
Kokala
, “
Quantifying the decrease of the photovoltaic panels' energy yield due to phenomena of natural air pollution disposal
,”
Energy
35
(
12
),
4862
4869
(
2010
).
51.
D.
Dalet
, see http://d-maps.com,
2013
for detailed information of topographical locations under consideration.
52.
M.
Gori
and
A.
Tesi
, “
On the problem of local minima in back propagation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
14
(
1
),
76
86
(
1992
).
53.
D. J.
Montana
and
L.
Davis
, “
Training feed forward neural networks using genetic algorithms
,”
Int. Joint Conf. Artif. Intell.
89
,
762
767
(
1989
).
You do not currently have access to this content.