Rates of Ocean Thermal Energy Conversion (OTEC) are assessed with a high-resolution (1° × 1°) ocean general circulation model when broad geographical restrictions are imposed on the OTEC implementation area. This may correspond to practical or legal limitations, such as the cost of long submarine power cables or the extent of Exclusive Economic Zones. Because some environmental effects predicted under large-scale OTEC scenarios exhibit a strong asymmetry among major oceanic basins, numerical experiments where the OTEC domain is restricted to such specific areas are also conducted. Results suggest that in all cases, a rate of about 0.2 TW per Sverdrup of OTEC deep cold seawater is sustained when overall OTEC net power peaks. At that juncture, temperature profiles in the OTEC implementation areas are affected in similar ways, while the strength of the Thermohaline Circulation roughly doubles. Overall geographical constraints simply defined by distance to shore, given the model's 1° horizontal resolution, produce global OTEC net power maxima of 12–14 TW. In such cases, OTEC net power density approximately increases in inverse proportion to the OTEC implementation area. Limiting OTEC development to the Indo-Pacific yields results similar to the global case with a maximum proportional to the implementation area (12 TW), but simulations restricted to the Atlantic behave quite differently. In the latter case, OTEC net power peaks a little over 5 TW. It is estimated that producing half the predicted power maxima would substantially limit large-scale environmental temperature changes in each case.

1.
A.
d'Arsonval
,
Rev. Sci.
17
,
370
(
1881
).
2.
G.
Claude
,
Mech. Eng.
52
,
1039
(
1930
).
3.
W. H.
Avery
and
C.
Wu
,
Renewable Energy from the Ocean
(
Oxford University Press
,
Oxford
,
1994
).
4.
G. C.
Nihous
and
M.
Gauthier
,
Marine Renewable Energy Handbook 12
, edited by
B.
Multon
(
John Wiley & Sons
,
New York
,
2011
), pp.
367
401
.
5.
G. C.
Nihous
,
The World Scientific Handbook of Energy
, edited by
G.
Crawley
(
World Scientific
,
Singapore
,
2013
), Vol.
16
, pp.
359
372
.
6.
G. C.
Nihous
,
J. Energy Resour. Technol.
127
,
328
(
2005
).
7.
G. C.
Nihous
,
J. Energy Resour. Technol.
129
,
10
(
2007
).
9.
K.
Rajagopalan
and
G. C.
Nihous
,
Renewable Energy
50
,
532
(
2013
).
10.
K.
Rajagopalan
and
G. C.
Nihous
,
J. Energy Resour. Technol.
135
,
041202
(
2013
).
11.
G. D.
Berry
and
S. M.
Aceves
,
J. Energy Resour. Technol.
127
,
89
(
2005
).
12.
J.
Marshall
,
A.
Adcroft
,
C.
Hill
,
L.
Perelman
, and
C.
Heisey
,
J. Geophys. Res.
102
(
C3
),
5753
, doi: (
1997
).
13.
A.
Adcroft
,
C.
Hill
,
J.-M.
Campin
,
J.
Marshall
, and
P.
Heimbach
, in
Proceedings of the ECMWF Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmosphere and Ocean Modeling
(
Reading, U.K.
,
2004
), pp.
139
149
.
14.
W. C.
Large
,
J. C.
McWilliams
, and
S. C.
Doney
,
Rev. Geophys.
32
,
363
, doi: (
1994
).
15.
G.
Forget
,
J. Phys. Oceanogr.
40
,
1201
(
2010
).
16.
A.
da Silva
,
A. C.
Young
, and
S.
Levitus
,
Atlas of Surface Marine Data 1994 Vol. 1: Algorithms and Procedures
, NOAA Atlas NESDIS 6 (
U.S. Government Printing Office
,
Washington, D.C.
1994
).
17.
B.
Barnier
,
L.
Siefridt
, and
P.
Marchesiello
,
J. Mar. Syst.
6
,
363
(
1995
).
18.
S. M.
Griffies
,
A.
Biastoch
,
C.
Böning
,
F.
Bryan
,
G.
Danabasoglu
,
E. P.
Chassignet
,
M. H.
England
,
R.
Gerdes
,
H.
Haak
,
R. W.
Hallberg
,
W.
Hazeler
,
J.
Jungclaus
,
W. G.
Large
,
G.
Madec
,
A.
Pirani
,
B. L.
Samuels
,
M.
Scheinert
,
A. S.
Gupta
,
C. A.
Severijns
,
H. L.
Simmons
,
A. M.
Treguier
,
M.
Winton
,
S.
Yeager
, and
J.
Yin
,
Ocean Model.
26
,
1
(
2009
).
19.
D.
Stammer
,
C.
Wunsch
,
R.
Giering
,
C.
Eckert
,
P.
Heimbach
,
J.
Marotzke
,
A.
Adcroft
,
C. N.
Hill
, and
J.
Marshall
,
J. Geophys. Res.
107
(
C9
),
1
1
1
27
, doi: (
2002
).
20.
C.
Wunsch
and
P.
Heimbach
,
J. Phys. Oceanogr.
36
,
2012
(
2006
).
21.
K.
Rajagopalan
and
G. C.
Nihous
, “
Predictions of water-column properties under widespread artificial upwelling scenarios in the North Pacific Subtropical Gyre using an ocean general circulation model
,”
J. Marine Env. Eng.
(in press).
22.
G.
Monterey
and
S.
Levitus
,
Seasonal Variability of Mixed Layer Depth for the World Ocean
, NOAA Atlas NESDIS 14 (
U.S. Government Printing Office
,
Washington, D.C.
1997
).
23.
T.
Tomczak
and
J. S.
Godfrey
,
Regional Oceanography: An Introduction
, 2nd ed. (
Daya Pub.
,
New Delhi, India
,
2003
).
24.
R. A.
Locarnini
,
A. V.
Mishonov
,
J. I.
Antonov
,
T. P.
Boyer
, and
H. E.
Garcia
,
World Ocean Atlas 2005, Volume 1: Temperature
, NOAA Atlas NESDIS 61 (
U.S. Government Printing Office
,
Washington, D.C.
2006
).
25.
S.
Claus
,
N.
De Hauwere
,
B.
Vanhoorne
,
F.
Hernandez
, and
J.
Mees
, Flanders Marine Institute; EEZ boundary files accessed at http://www.marineregions.org on 04/18/2013.
26.
R.
Schlitzer
, see http://odv.awi.de for Ocean Data View.
You do not currently have access to this content.