A comparison of the DirIndex model for computing direct normal solar irradiance from global horizontal using different clear sky transmittance models is presented for four ground stations that belong to Baseline Surface Radiation Network (BSRN) and Aerosol RObotic NETwork (AERONET) networks. The results of DirInt model, which does not include any clear sky transmittance contribution, are also shown. The input for the different clear sky models selected (European Solar Radiation Atlas (ESRA), SOLar Irradiance Scheme (SOLIS) simplified, and Reference Evaluation of Solar Transmittance, 2 bands (REST2)) was generated from the original aerosol optical depth and water vapour measurements provided by AERONET. The results show different trends in the performance of the DirIndex model combined with the clear sky methods. An attempt to correct the trends to the proper one is finally proposed here and the improvement achieved is shown.

1.
Batlles
,
F. J.
,
Rubio
,
M. A.
,
Tovar
,
J.
,
Olmo
,
F. J.
, and
Alados-Arboledas
,
L.
, “
Empirical modeling of hourly direct irradiance by means of hourly global irradiance
,”
Energy
25
,
675
688
(
2000
).
2.
Cachorro
,
V. E.
,
Gonzalez
,
M. J.
,
de Frutos
,
A. M.
, and
Casanova
,
J. L.
, “
Fitting Angstrom formula to spectrally resolved aerosol optical thickness
,”
Atmos. Environ.
23
,
265
270
(
1989
).
3.
de Miguel
,
A.
,
Bilbao
,
J.
,
Aguiar
,
R.
,
Kambezidis
,
H.
, and
Negro
,
E.
, “
Diffuse solar irradiation model evaluation in the North Mediterranean Belt area
,”
Sol. Energy
70
,
143
153
(
2001
).
4.
Erbs
,
D. G.
,
Klein
,
S. A.
, and
Duffie
,
J. A.
, “
Estimation of the diffuse radiation fraction for hourly, daily, and monthly-average global radiation
,”
Sol. Energy
28
,
293
302
(
1982
).
5.
Gueymard
,
C.
,
SMARTS2, Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment
(
Florida Solar Energy Center
,
1995
).
6.
Gueymard
,
C. A.
, “
Temporal variability in direct and global irradiance at various time scales as affected by aerosols
,”
Sol. Energy
86
,
3544
3553
(
2012a
).
7.
Gueymard
,
C. A.
, “
Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models
,”
Sol. Energy
86
,
2145
2169
(
2012b
).
8.
Gueymard
,
C. A.
, “
REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation—Validation with a benchmark dataset
,”
Sol. Energy
82
,
272
285
(
2008
).
9.
Hoyer-Klick
,
C.
,
Beyer
,
H. G.
,
Dumortier
,
D.
,
Schroedter Homscheidt
,
M.
,
Wald
,
L.
,
Martinoli
,
M.
,
Schillings
,
C.
,
Gschwind
,
B. T.
,
Menard
,
L.
,
Gaboardi
,
E.
,
Polo
,
J.
,
Cebecauer
,
T.
,
Huld
,
T.
,
Suri
,
M.
,
de Blas
,
M.
,
Lorenz
,
E.
,
Kurz
,
C.
,
Remund
,
J.
,
Ineichen
,
P.
,
Tsvetkov
,
A.
, and
Hofierka
,
J.
, “
MESoR—Management and exploitation of solar resource knowledge
,” in Proceedings of the SolarPACES Conference, Berlin,
2009
.
10.
Ineichen
,
P.
and
Perez
,
R.
, “
A new airmass independent formulation for the Linke turbidity coefficient
,”
Sol. Energy
73
,
151
157
(
2002
).
11.
Ineichen
,
P.
, “
Comparison and validation of three global-to-beam irradiance models against ground measurements
,”
Sol. Energy
82
,
501
512
(
2008a
).
12.
Ineichen
,
P.
, “
A broadband simplified version of the Solis clear sky model
,”
Sol. Energy
82
,
758
762
(
2008b
).
13.
Ineichen
,
P.
, “
Conversion function between the Linke turbidity and the atmospheric water vapor and aerosol content
,”
Sol. Energy
82
,
1095
1097
(
2008c
).
14.
Iqbal
,
M.
, “
A study of Canadian diffuse and total solar radiation data—I Monthly average daily horizontal radiation
,”
Sol. Energy
22
,
81
86
(
1979
).
15.
Liu
,
B. Y. H.
and
Jordan
,
R. C.
, “
The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation
,”
Sol. Energy
4
,
1
19
(
1960
).
16.
Louche
,
A.
,
Notton
,
G.
,
Poggi
,
P.
, and
Simonnot
,
G.
, “
Correlations for direct normal and global horizontal irradiation on a French Mediterranean site
,”
Sol. Energy
46
,
261
266
(
1991
).
17.
Maxwell
,
E. L.
, “
A quasi-physical model for converting hourly global horizontal to direct normal insolation
,” Technical Report No. SERI/TR–215-3087,
1987
.
18.
McArthur
,
L. J. B.
,
Baseline Surface Radiation Network (BSRN) Operations Manual V1.0
, Series: World Climate Research Programme (
Secretariat of the World Meteorological Organization
,
Geneva, Switzerland
,
1998
).
19.
Mueller
,
R. W.
,
Dagestad
,
K. F.
,
Ineichen
,
P.
,
Schroedter-Homscheidt
,
M.
,
Cros
,
S.
,
Dumortier
,
D.
,
Kuhlemann
,
R.
,
Olseth
,
J. A.
,
Piernavieja
,
G.
, and
Reise
,
C.
, “
Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module
,”
Remote Sens. Environ.
91
,
160
174
(
2004
).
20.
Orgill
,
J. F.
and
Hollands
,
K. G. T.
, “
Correlation equation for hourly diffuse radiation on a horizontal surface
,”
Sol. Energy
19
,
357
359
(
1977
).
21.
Perez
,
R.
,
Ineichen
,
P.
,
Maxwell
,
E.
,
Seals
,
R.
, and
Zelenka
,
A.
, “
Dynamic global-to-direct irradiance conversion models
,”
ASHRAE Trans.
98
,
354
369
(
1992
).
22.
Perez
,
R.
,
Ineichen
,
P.
,
Moore
,
K.
,
Kmiecik
,
M.
,
Chain
,
C.
,
George
,
R.
, and
Vignola
,
F.
, “
A new operational model for satellite-derived irradiances: Description and validation
,”
Sol. Energy
73
,
307
317
(
2002
).
23.
Reindl
,
D. T.
,
Beckman
,
W. A.
, and
Duffie
,
J. A.
, “
Diffuse fraction correlations
,”
Sol. Energy
45
,
1
7
(
1990
).
24.
Rigollier
,
C.
,
Bauer
,
O.
, and
Wald
,
L.
, “
On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the heliosat method
,”
Sol. Energy
68
,
33
48
(
2000
).
25.
Skartveit
,
A.
,
Olseth
,
J. A.
, and
Tuft
,
M. E.
, “
An hourly diffuse fraction model with correction for variability and surface albedo
,”
Sol. Energy
63
,
173
183
(
1998
).
You do not currently have access to this content.