An optimization methodology for a stall regulated, fixed pitch, horizontal axis hydrokinetic turbine is presented using a combination of a coupled hydro-structural analysis and Genetic Algorithm (GA) based optimization method. Design and analysis is presented for two different designs: a constant chord, zero twist blade, and a variable chord, twisted blade. A hybrid approach is presented combining Blade Element Momentum (BEM), GA, Computational Fluid Dynamics (CFD), and Finite Element Analysis (FEA) techniques. The preliminary analysis is performed using BEM method to find the hydrodynamic performance and flap-wise bending stresses in turbine blades. The BEM analysis used for the current study incorporates effect of wake rotation, hub loss and tip loss factors, and effect of Reynolds number on hydrodynamic data. A multi-objective optimization is then performed to maximize performance and structural strength of turbine. The results of optimization for a constant chord, zero twist blade design are validated with detailed three dimensional CFD and finite element analysis. The fluid domain is coupled with the structural domain through one way coupling and fluid-structure interaction analysis is carried out to find the effect of blade geometry and operating conditions on the stresses developed in the blades. The hydrodynamic performance of a constant chord turbine was found to be limited by the high stresses developed in turbine blades. Hence, in an effort to reduce the stresses in turbine blades, a variable chord, twisted blade design was developed; and a multi-objective optimization is presented for the variable chord twisted blade turbine for hydro-structural performance improvement. The final-optimized variable chord, twisted blade design was found to improve the power coefficient by 17% and resulted in lower overall stresses.

1.
D. G.
Hall
,
K. S.
Reeves
,
J.
Brizzee
,
R. D.
Lee
,
G. R.
Carroll
, and
G. L.
Sommers
, “
Wind and hydropower technologies, feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of hydroelectric plants
,” Technical Report-Doe-Id-11263,
U.S. Department of Energy, Energy Efficiency, and Renewable Energy, Idaho National Laboratory
,
2006
.
2.
A.
Date
and
A.
Akbarzadeh
, “
Design and cost analysis of low head simple reaction hydro turbine for remote area power supply
,”
Renewable Energy
34
,
409
415
(
2009
).
3.
S. A.
Korpela
,
Principles of Turbomachinery
, 1st ed. (
Wiley
,
Hoboken, New Jersey
,
2011
), p.
457
.
4.
C. A.
Consul
,
R. H. J.
Willden
,
E.
Ferrer
, and
M. D.
McCulloch
, “
Influence of solidity on the performance of a cross-flow turbine
,” in
Proceedings of the 8th European Wave And Tidal Energy Conference
,
2009
.
5.
U.S. Energy Information Administration
Annual energy review
,” in
Office of Energy Statistics
(
U.S. Energy Information Administration
:
Washington, DC
20585,
2011
).
6.
K.
Bracmort
,
C. V.
Stern
, and
V.
Adam
,
Hydropower: Federal and Nonfederal Investment
(
Congressional Research Service
,
2013
).
7.
World Commission on Dams
Dams and Developement—A New Framework for Decision Making
(
World Commission on Dams
,
2000
).
8.
D. G.
Hall
,
S. J.
Cherry
,
K. S.
Reeves
,
R. D.
Lee
,
G. R.
Carroll
,
G. L.
Sommers
, and
K. L.
Verdin
,
Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources
, edited by, I.N.E. and Environmental Laboratory (
U.S. Department of Energy
,
2004
).
9.
M. S.
Guney
and
K.
Kaygusuz
, “
Hydrokinetic energy conversion systems: A technology status review
,”
Renewable Sustainable Energy Rev.
14
,
2996
3004
(
2010
).
10.
P.
Jacobson
,
Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States
(
Electric Power Research Institute
,
Palo Alto, CA
,
2012
).
11.
K. A.
Haas
,
H. M.
Fritz
,
S. P.
French
,
B. T.
Smith
, and
V.
Neary
,
The Assessment of Energy Production Potential from Tidal Streams in the United States
(
Georgia Tech Research Corporation
,
2011
).
12.
M. M.
Duquette
and
J.
Swanson
, “
Solidity and blade number effects on a fixed pitch, 50w horizontal axis wind turbine
,”
Wind Eng.
27
,
299
316
(
2003
).
13.
M. M.
Duquette
and
K. D.
Visser
, “
Numerical implications of solidity and blade number on rotor performance of horizontal axis wind turbines
,”
J. Sol. Energy Eng.
125
,
425
432
(
2003
).
14.
L.
Myers
and
A. S.
Bahaj
, “
Wake studies of a 1/30th scale horizontal axis marine current turbine
,”
Ocean Eng.
34
,
758
762
(
2007
).
15.
L.
Myers
and
A. S.
Bahaj
, “
Power output performance characteristics of a horizontal axis marine current turbine
,”
Renewable Energy
31
,
197
208
(
2006
).
16.
L. E.
Myers
and
A. S.
Bahaj
, “
Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators
,”
Ocean Eng.
37
,
218
227
(
2010
).
17.
V. S.
Neary
,
A. A.
Fontaine
,
P.
Bachant
,
B.
Gunawan
,
M.
Wosnik
,
C.
Michelen
, and
B.
Straka
, “
US Department of Energy, National Lab Activities in Marine Hydrokinetics: Scaled model testing of doe reference turbines
,” in
10th European Wave and Tidal Energy Conference
, Aalborg, Denmark, 2–5 September
2013
.
18.
V. S.
Neary
,
B.
Gunawan
,
C.
Hill
, and
L. P.
Chamorro
, “
Near and far field flow disturbances induced by model hydrokinetic turbine: Adv and Adp comparison
,”
Renewable Energy
60
,
1
6
(
2013
).
19.
H.
Glauert
, “
Airplane Propellers
,” in
Aerodynamic Theory
, edited by
W. F.
Durand
(
Springer Verlag
,
Berlin
,
1935
).
20.
J. N.
Sørensen
, “
Aerodynamic aspects of wind energy conversion
,”
Annu. Rev. Fluid Mech.
43
,
427
448
(
2011
).
21.
J. L.
Hess
, “
Panel methods in computational fluid dynamics
,”
Annu. Rev. Fluid Mech.
22
,
255
274
(
1990
).
22.
Y. L.
Young
,
M. R.
Motley
, and
R. W.
Yeung
, “
Three-dimensional numerical modeling of the transient fluid-structural interaction response of tidal turbines
,”
J. Offshore Mech. Arct. Eng.
132
,
011101
(
2010
).
23.
J. C.
Murray
and
M.
Barone
, “
The development of cactus, a wind and marine turbine performance simulation code
,” AIAA Paper 2011-147,
2011
.
24.
S. S.
Mukherji
,
N.
Kolekar
,
A.
Banerjee
, and
R.
Mishra
, “
Numerical investigation and evaluation of optimum hydrodynamic performance of a horizontal axis hydrokinetic turbine
,”
J. Renewable Sustainable Energy
3
,
063105
(
2011
).
25.
S.
Kang
,
I.
Borazjani
,
J. A.
Colby
, and
F.
Sotiropoulos
, “
Numerical simulation of 3d flow past a real marine hydrokinetic turbine
,”
Adv. Water Resour.
39
,
33
43
(
2012
).
26.
C. A.
Consul
,
R. H. J.
Willden
, and
S. C.
McIntosh
, “
Blockage effects on the hydrodynamic performance of a marine cross-flow turbine
,”
Philos. Trans. R. Soc. London, Ser. A
371
,
20120299
(
2013
).
27.
M. J.
Churchfield
,
Y.
Li
, and
P. J.
Moriarty
, “
A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines
,”
Philos. Trans. R. Soc. London, Ser. A
371
,
20120421
(
2013
).
28.
W. M. J.
Batten
,
M. E.
Harrison
, and
A. S.
Bahaj
, “
Accuracy of the actuator disc-rans approach for predicting the performance and wake of tidal turbines
,”
Philos. Trans. R. Soc. London, Ser. A
371
,
20120293
(
2013
).
29.
I. S.
Hwang
,
Y. H.
Lee
, and
S. J.
Kim
, “
Optimization of cycloidal water turbine and the performance improvement by individual blade control
,”
Appl. Energy
86
,
1532
1540
(
2009
).
30.
T.
Stallard
,
R.
Collings
,
T.
Feng
, and
J.
Whelan
, “
Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors
,”
Philos. Trans. R. Soc. London, Ser. A
371
,
20120159
(
2013
).
31.
E. H.
Dowell
and
K. C.
Hall
, “
Modeling of fluid structure interactions
,”
Annu. Rev. Fluid Mech.
33
,
445
490
(
2001
).
32.
Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction: Numerical Simulation
, edited by
M.
Souli
and
J. B.
David
(
ISTE—John Wiley and Sons, Inc.
,
Hoboken, New Jersey
,
2010
).
33.
G.
Hou
,
J.
Wang
, and
A.
Layton
, “
Numerical methods for fluid-structure interaction—A review
,”
Commun. Comput. Phys.
12
,
337
377
(
2012
).
34.
Y. L.
Young
, “
Fluid–structure interaction analysis of flexible composite marine propellers
,”
J. Fluids Struct.
24
,
799
818
(
2008
).
35.
X. D.
He
,
Y.
Hong
, and
R. G.
Wang
, “
Hydroelastic optimisation of a composite marine propeller in a non-uniform wake
,”
Ocean Eng.
39
,
14
23
(
2012
).
36.
M. S.
Selig
and
V. L.
Coverstone-Carroll
, “
Application of a genetic algorithm to wind turbine design
,”
J. Energy Resour. Technol.
118
,
22
28
(
1996
).
37.
M. A.
Belessis
,
D. G.
Stamos
, and
S. G.
Voutsinas
, “
Investigation of the capabilities of a genetic optimization algorithm in designing wind turbine rotors
,” in
Proceedings of the European Union Wind Energy Conference and Exhibition
,
1996
.
38.
P.
Fuglsang
and
H. A.
Madsen
, “
Optimization method for wind turbine rotors
,”
J. Wind. Eng. Ind. Aerodyn.
80
,
191
206
(
1999
).
39.
A.
Betz
,
Der Maximum Der Theoretisch Mölichen Ausnützung Des Windes Durch Windmotoren (the Maximum of the Theoretically Possible Exploitation of the Wind by Wind Motors)
(
Zeitschrift für das Gesamte Turbinenwesen
,
1920
), Vol. 17.
40.
A.
Betz
,
Windenergie Und Ihre Ausnutzung Durch Windmühen (Wind Energy and Its Application by Windmills)
(
Zeitschrift für das Gesamte Turbinenwesen
,
Göttingen
,
1926
).
41.
N.
Kolekar
,
Z.
Hu
,
A.
Banerjee
, and
X.
Du
, “
Hydrodynamic design and optimization of hydro-kinetic turbines using a robust design method
,” in
Proceedings of the 1st Marine Energy Technology Symposium
, METS13, Washington, D.C.,
2013
.
42.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
,
Wind Energy Explained: Theory, Design, and Application
(
John Wiley and Sons
,
New York
,
2009
), Vol. 2.
43.
D.
Mark
and
Y.
Harold
, Xfoil, Subsonic Airfoil Development System., see http://web.mit.edu/drela/Public/web/xfoil/.
44.
D.
Mark
and
Y.
Harold
, Xfoil User Guide.
45.
J.
Degroote
,
K.-J.
Bathe
, and
J.
Vierendeels
, “
Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction
,”
Comput. Struct.
87
,
793
801
(
2009
).
46.
N.
Kolekar
,
S. S.
Mukherji
, and
A.
Banerjee
, “
Numerical modeling and optimization of hydrokinetic turbine
,” in
ASME 2011 5th International Conference on Energy Sustainability
(ASME, Washington DC, USA,
2011
).
47.
Ansys Cfx 14 User's Guide, ANSYS, Inc.,
2011
.
48.
Ansys Fluent 14.0 Theory Guide, ANSYS, Inc.,
2011
.
49.
Ansys Cfx 14 Theory Guide, ANSYS, Inc.,
2011
.
50.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
51.
F. R.
Menter
, “
Performance of popular turbulence models for attached and separated adverse pressure gradient flows
,”
AIAA J.
30
,
2066
2072
(
1992
).
52.
L. J.
Vermeer
,
J. N.
Sorensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
53.
D. C.
Wilcox
,
Turbulence Modeling for Cfd
, 3rd ed. (
DCW Industries
,
La Canada, CA
,
2006
).
54.
P.
Giguère
and
M. S.
Selig
,
Design of a Tapered and Twisted Blade for the Nrel Combined Experiment Rotor
(
NREL
:
Golden, Colorado
,
1999
).
55.
H. A.
Madsen
,
C.
Bak
,
M.
Døssing
,
R.
Mikkelsen
, and
S.
Øye
, “
Validation and modification of the blade element momentum theory based on comparisons with actuator disc simulations
,”
Wind Energy
13
,
373
389
(
2010
).
56.
V.
Neary
,
Reference Inflow Characterization for River Resource Reference Model (Rm2)
(
Oak Ridge National Laboratory
,
Oak Ridge, Tennessee
,
2011
).
57.
F. L.
Ponta
and
H.
Aref
, “
Numerical experiments on vortex shedding from an oscillating cylinder
,”
J. Fluids Struct.
22
,
327
344
(
2006
).
58.
J. H.
Holland
,
Genetic Algorithms
(
Scientific American
,
1992
).
59.
D. E.
Goldberg
,
Genetic Algorithms in Search, Optimization and Machine Learning
(
Addison-Wesley Longman Publishing Co., Inc.
,
1989
), p.
372
.
60.
V.
Okulov
and
J. N.
Sørensen
, “
Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches
,”
J. Fluid Mech.
649
,
497
508
(
2010
).
61.
P.
Giguère
and
M. S.
Selig
, “
New airfoils for small horizontal axis wind turbines
,”
ASME J. Sol. Energy Eng.
120
,
108
114
(
1998
).
62.
Z.
Hu
,
X.
Du
,
N.
Kolekar
, and
A.
Banerjee
, “
Robust design with imprecise random variables and its application in hydrokinetic turbine optimization
,”
Eng. Optimiz.
2013
,
1
27
.
63.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
, “
Aerodynamics of wind turbines
,” in
Wind Energy Explained
(
John Wiley & Sons, Ltd.
,
2009
), pp.
91
155
.
You do not currently have access to this content.