Energy is vital to social and economic development. Increased energy demand and reduced fossil fuel resources led to use of renewable energy (RE) resources, whose intermittence and high investment cost spur research into optimal sizing of hybrid systems. Advancements in computer hardware and software enable solution of optimization problems through algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), etc. The recently introduced Imperialistic Competition Algorithm (ICA) has shown excellent capability in solving various optimization problems. This paper introduces it and shows its benefits to an optimal-sizing problem of a hybrid RE system. The results will be shown and the effect of changing optimization's parameters will be discussed. To test the potential of proposed algorithm for minimum cost solution finding, a comparison between ICA and PSO algorithm will be provided. Results show the advantage of using ICA algorithm to find a better optimum solution for hybrid power system.

1.
J.
Chang
,
D. Y. C.
Leung
,
C. Z.
Wu
, and
Z. H.
Yuan
, “
A review on the energy production, consumption, and prospect of renewable energy in China
,”
Renewable Sustainable Energy Rev.
7
,
453
468
(
2003
).
2.
M.
Lukenmez
and
E.
Demireli
, “
Renewable energy policy in Turkey with the new legal regulations
,”
Renewable Energy
39
,
1
9
(
2012
).
3.
G. M.
Shafiullah
,
M. T. O.
Amanullah
,
A.
Ali
,
D.
Jarvis
, and
P.
Wolfs
, “
Prospects of renewable energy—A feasibility study in the Australian context
,”
Renewable Energy
39
,
183
197
(
2012
).
4.
T.
Abbasi
and
S. A.
Abbasi
, “
Decarbonization of fossil fuels as a strategy to control global warming
,”
Renewable Sustainable Energy Rev.
15
,
1828
1834
(
2011
).
5.
T.
Abbasi
,
M.
Premalatha
, and
S. A.
Abbasi
, “
The return to renewables: Will it help in global warming control?
,”
Renewable Sustainable Energy Rev.
15
,
891
894
(
2011
).
6.
L.
Zhipeng
,
W.
Fushuan
, and
G.
Ledwich
, “
Optimal sitting and sizing of distributed generators in distribution systems considering uncertainties
,”
IEEE Trans. Power Deliv.
26
,
2541
2551
(
2011
).
7.
E. I.
Vrettos
and
S. A.
Papathanassiou
, “
Operating policy and optimal sizing of a high penetration RES-BESS system for small isolated grids
,”
IEEE Trans. Energy Convers.
26
,
744
756
(
2011
).
8.
G. B.
Shrestha
and
L.
Goel
, “
A study on optimal sizing of stand-alone photovoltaic stations
,”
IEEE Trans. Energy Convers.
13
,
373
378
(
1998
).
9.
R. L.
Haupt
and
S. E.
Haupt
,
Practical Genetic Algorithms
, 2nd ed. (
John Wiley & Sons
,
2004
).
10.
H.
Golpira
and
H.
Bevrani
, “
Application of GA optimization for automatic generation control design in an interconnected power system
,”
Energy Convers. Manage.
52
,
2247
2255
(
2011
).
11.
P.
Bhatt
,
R.
Roy
, and
S. P.
Ghoshal
, “
GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control
,”
Int. J. Electr. Power Energy Syst.
32
,
299
310
(
2010
).
12.
R. K.
Jatoth
and
G. A.
Reddy
, “
A hybrid GA-adaptive particle swarm optimization based tuning of unscented Kalman filter for harmonic estimation
,” in
Swarm, Evolutionary, and Memetic Computing
, edited by
B. K.
Panigrahi
,
S.
Das
,
P. N.
Suganthan
, and
S. S.
Dash
(
Springer-Verlag
,
Berlin
,
2010
), Vol.
6466
, pp.
380
388
.
13.
R. A.
Hooshmand
and
S.
Soltani
, “
Fuzzy optimal phase balancing of radial and meshed distribution networks using BF-PSO algorithm
,”
IEEE Trans. Power Syst.
27
(
1
),
47
57
(
2012
).
14.
M.
Melanie
, “
An introduction to genetic algorithms
,” in
A Bradford Book
(
The MIT Press Cambridge
,
Massachusetts London, England
,
1999
), Fifth printing.
15.
A.
Azadeh
,
S. F.
Ghaderi
,
B. P.
Nokhandan
, and
M.
Sheikhalishahi
, “
A new genetic algorithm approach for optimizing bidding strategy viewpoint of profit maximization of a generation company
,”
Expert Sys. Applic.
39
,
1565
1574
(
2012
).
16.
Y.-H.
Wang
,
Y.-C.
Li
, and
H.-C.
Liao
, “
Using a genetic algorithm to determine optimal complementary learning clusters for ESL in Taiwan
,”
Expert Sys. Applic.
38
,
14832
14837
(
2011
).
17.
N.
Dong
,
C.-H.
Wu
,
W.-H.
Ip
,
Z.-Q.
Chen
,
C.-Y.
Chan
, and
K.-L.
Yung
, “
An improved species based genetic algorithm and its application in multiple template matching for embroidered pattern inspection
,”
Expert Sys. Applic.
38
,
15172
15182
(
2011
).
18.
M.
Dorigo
and
C.
Blum
, “
Ant colony optimization theory: A survey
,”
Theor. Comput. Sci.
344
,
243
278
(
2005
).
19.
S.-M.
Chen
and
C.-Y.
Chien
, “
Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques
,”
Expert Sys. Applic.
38
,
14439
14450
(
2011
).
20.
Y.
Betul
, “
Mixed-model assembly line balancing using a multi-objective ant colony optimization approach
,”
Expert Sys. Applic.
38
,
12453
12461
(
2011
).
21.
J.
Tian
,
L.
Ma
, and
W.
Yu
, “
Ant colony optimization for wavelet-based image interpolation using a three-component exponential mixture model
,”
Expert Sys. Applic.
38
,
12514
12520
(
2011
).
22.
A.
Fetanat
and
G.
Shafipour
, “
Generation maintenance scheduling in power systems using ant colony optimization for continuous domains based 0–1 integer programming
,”
Expert Sys. Applic.
38
,
9729
9735
(
2011
).
23.
S.
Mukhopadhyay
and
S.
Banerjee
, “
Global optimization of an optical chaotic system by chaotic multi swarm particle swarm optimization
,”
Expert Sys. Applic.
39
,
917
924
(
2012
).
24.
R. C.
Green Ii
,
L.
Wang
, and
M.
Alam
, “
Training neural networks using central force optimization and particle swarm optimization: Insights and comparisons
,”
Expert Sys. Applic.
39
,
555
563
(
2012
).
25.
W.
Qi
, “
Hybrid wavelet ν-support vector machine and chaotic particle swarm optimization for regression estimation
,”
Expert Sys. Applic.
38
,
14624
14632
(
2011
).
26.
H.
Jiang
,
C. K.
Kwong
,
Z.
Chen
, and
Y. C.
Ysim
, “
Chaos particle swarm optimization and T–S fuzzy modeling approaches to constrained predictive control
,”
Expert Sys. Applic.
39
,
194
201
(
2012
).
27.
M.
Moradi
and
M.
Abedini
, “
A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems
,”
Int. J. Electr. Power Energy Syst.
34
,
66
74
(
2012
).
28.
S. M.
Hakimi
and
S. M.
Moghaddas-Tafreshi
, “
Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran
,”
Renewable Energy
34
,
1855
1862
(
2009
).
29.
H.
Sepehri Rad
and
C.
Lucas
, “
Application of imperialistic competition algorithm in recommender systems
,” in
Proceedings of the 3rd International CSI Computer Conference (CSICC'08)
, Iran,
2008
.
30.
R.
Rajabioun
,
F.
Hashemzadeh
,
E.
Atashpaz-Gargari
,
B.
Mesgari
, and
F.
Rajaei Salmasi
, “
Identification of a MIMO evaporator and its decentralized PID controller tuning using colonial competitive algorithm
,” in
IFAC World Congress
,
2008
.
31.
H.
Mozafari
,
B.
Abdi
, and
A.
Ayob
, “
Optimization of transmission conditions for thin interphase layer based on imperialist competitive algorithm
,”
Int. J. Comput. Sci. Eng.
2
,
2486
2490
(
2010
).
32.
T.
Weise
, Global Optimization Algorithms–Theory and Application (
2008
); online at http://www.it-weise.de.
33.
E. H.
Nasab
,
M.
Khezri
,
M. S.
Khodamoradi
, and
E. A.
Gargari
, “
An application of imperialist competitive algorithm to simulation of energy demand based on economic indicators: Evidence from Iran
,”
Eur. J. Sci. Res.
43
,
495
506
(
2010
).
34.
E.
Atashpaz-Gargari
and
C.
Lucas
, “
Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
,” in
IEEE Congress on Evolutionary Computation CEC2007
(IEEE,
2007
), pp.
4661
4667
.
35.
M. M.
Hadji
and
B.
Vahidi
, “
A solution to the unit commitment problem using imperialistic competition algorithm
,”
IEEE Trans. Power Syst.
27
(
1
),
117
124
(
2012
).
36.
D.
Feldman
,
G.
Barbose
,
R.
Margolis
,
R.
Wiser
,
N.
Darghouth
, and
A.
Goodrich
,
Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections
, (
National Renewable Energy Laboratory (NREL)
,
Golden, CO
,
2012
).
37.
R.
Tidball
,
J.
Bluestein
,
N.
Rodriguez
, and
S.
Knoke
, “
Cost and performance assumptions for modeling electricity generation technologies
,”
Contract.
303
,
1
201
(
2010
).
38.
E.
Lantz
,
R.
Wiser
, and
M.
Hand
, “
The past and future cost of wind energy
,” in
IEA Wind Task
(NREL,
2012
), Vol. 26.
You do not currently have access to this content.