Municipal wastewater is a major problem due to its high concentration of nutrients, which can cause eutrophication of the surrounding water, resulting in serious disturbance in health and ecosystem. Microalgae can utilize nitrogen and phosphorus in wastewater as a potential source of cost effective and sustainable means for biodiesel production. Two microalgal species including Scenedesmus obliquus HM103382 and Micractinium reisseri JN169781 were cultivated in domestic wastewater (influent and effluent) that was pretreated and supplemented with 15% CO2 in order to accomplish simultaneous nutrient removal and lipid production from wastewater. The biomass yield and lipid production were relatively high using either autoclaved or filter-sterilized wastewater compared to using either UV-irradiated or unsterilized wastewater (control). M. reisseri and S. obliquus grown in the autoclaved influent showed high biomass yield (0.41 ± 0.01 and 0.26 ± 0.03 g dry wt. l−1) and lipid content (22% and 19%), respectively. The highest removal rates of nitrogen (97%), phosphorus (98%), and inorganic carbon (77%) were achieved by M. reisseri cultivated in the autoclaved influent. The saturated fatty acids fractions accounted for 66% and 60% of the total fatty acids accumulated in M. reisseri grown in the filter-sterilized influent and the autoclaved effluent, respectively, which is desirable for good quality biodiesel.

1.
P. T.
Vasudevan
and
M.
Briggs
, “
Biodiesel production-current state of the art and challenges
,”
J. Ind. Microbiol. Biotechnol.
35
,
421
430
(
2008
).
2.
E. R.
Bruce
, “
Opportunities for renewable bioenergy using microorganisms
,”
Biotechnol. Bioeng.
100
,
203
212
(
2008
).
3.
M. J.
Groom
,
E. M.
Gray
, and
P. A.
Townsend
, “
Biofuels and biodiversity: Principles for creating better policies for biofuel production
,”
Conserv. Biol.
22
,
602
609
(
2008
).
4.
J.
Hill
,
S.
Polasky
,
E.
Nelson
,
D.
Tilman
,
H.
Huo
,
L.
Ludwig
,
J.
Neumann
,
H.
Zheng
, and
D.
Bonta
, “
Climate change and health costs of air emissions from biofuels and gasoline
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
2077
2082
(
2009
).
5.
M. E.
Huntley
and
D. G.
Redalje
, “
CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal
,”
Mitigation Adapt. Strategies Global Change
12
,
573
608
(
2007
).
6.
G.
Huang
,
F.
Chen
,
D.
Wei
,
X.
Zhang
, and
G.
Chen
, “
Biodiesel production by microalgal biotechnology
,”
Appl. Energy
87
,
38
46
(
2010
).
7.
Y.
Chisti
, “
Biodiesel from microalgae
,”
Biotechnol. Adv.
25
,
294
306
(
2007
).
8.
W. J.
Oswald
and
C. G.
Golueke
,
in Advances in Applied Microbiology
, edited by
W. W.
Umbreit
(
Academic Press
,
New York
,
1960
).
9.
Y.
Li
,
Y.
Chen
,
P.
Chen
,
P. M.
Min
,
W.
Zhou
,
B.
Martinez
,
J.
Zhu
, and
R.
Ruan
, “
Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production
,”
Bioresour. Technol.
102
,
5138
5144
(
2011
).
10.
I.
de-Godos
,
V. A.
Vargas
,
S.
Blanco
,
M. C.
Garcia-Gonzalez
,
R.
Soto
,
P. A.
Garcia-Encina
,
E.
Becares
, and
R.
Muioz
, “
A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation
,”
Bioresour. Technol.
101
,
5150
5158
(
2010
).
11.
W.
Zhou
,
M.
Min
,
Y.
Li
,
B.
Hu
,
X.
Ma
,
Y.
Cheng
,
Y.
Liu
,
P.
Chen
, and
R.
Ruan
, “
A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation
,”
Bioresour. Technol.
110
,
448
455
(
2012
).
12.
P.
Spolaore
,
C.
Joannis-Cassan
,
E.
Duran
, and
A.
Isambert
, “
Commercial applications of microalgae
,”
J. Biosci. Bioeng.
101
,
87
96
(
2006
).
13.
R. A. I.
Abou-Shanab
,
M. K.
Ji
,
H. C.
Kim
,
K. J.
Paeng
, and
B. H.
Jeon
, “
Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production
,”
J. Environ. Manage.
115
,
257
264
(
2013
).
14.
I.
Woertz
,
A.
Feffer
,
T.
Lundquist
, and
Y.
Nelson
, “
Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock
,”
J. Environ. Eng.
135
,
1115
1122
(
2009
).
15.
See http://www.ncbi.nlm.nih.gov/nuccore/103382 for information of algal gene.
16.
See http://www.ncbi.nlm.nih.gov/nuccore/JN169781 for information of algal gene.
17.
T.
Kanz
and
H. C.
Bold
,
Physiological Studies, Morphological and Taxonomical Investigation of Nostoc and Anabaena in Culture
(
University of Texas
,
Austin
,
1969
).
18.
American Public Health Association, Methods for Biomass Production, Standard Methods for the Examination of Water and Wastewater, Baltimore, MD, USA,
1998
.
19.
E. G.
Bligh
and
W. J.
Dyer
, “
A rapid method of total lipid extraction and purification
,”
Can. J. Biochem. Physiol.
37
,
911
917
(
1959
).
20.
G.
Lepage
and
C. C.
Roy
, “
Improved recovery of fatty acid through direct transesterification without prior extraction or purification
,”
J. Lipid Res.
25
,
1391
1396
(
1984
).
21.
P. J.
McGinn
,
K. E.
Dickinson
,
S.
Bhatti
,
J. C.
Frigon
,
S. R.
Guiot
, and
J. B. O.
Stephen
, “
Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: Opportunities and limitations
,”
Photosynth. Res.
109
,
231
247
(
2011
).
22.
L.
Wang
,
Y.
Li
,
P.
Chen
,
M.
Min
,
Y.
Chen
,
J.
Zhu
, and
R. R.
Ruan
, “
Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.
,”
Bioresour. Technol.
101
,
2623
2628
(
2010
).
23.
C. S.
Reynolds
,
The Ecology of Freshwater Phytoplankton
(
Cambridge University Press
,
Cambridge
,
1984
).
24.
C.
Martin
,
J.
De la Noüe
, and
G.
Picard
, “
Intensive culture of freshwater microalgae on aerated pig manure
,”
Biomass
7
,
245
259
(
1985
).
25.
J. S.
Burlew
,
Current Status of the Large-Scale Culture of Algae
(
Carnegie Institution
Washington, USA
,
1953
).
26.
M.
Aresta
,
A.
Dibenedetto
, and
G.
Barberio
, “
Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study
,”
Fuel Process. Technol.
86
,
1679
1693
(
2005
).
27.
O.
Perez-Garcia
,
L. E.
de-Bashan
,
J. P.
Hernandez
, and
Y.
Bashan
, “
Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense
,”
J. Phycol.
46
,
800
812
(
2010
).
28.
J. K.
Pittman
,
A. P.
Dean
, and
O.
Osundeko
, “
The potential of sustainable algal biofuel production using wastewater resources
,”
Bioresour. Technol.
102
,
17
25
(
2011
).
29.
Q.
Wang
,
S.
Jantaro
,
B.
Lu
,
W.
Majeed
,
M.
Bailey
, and
Q.
He
, “
The high light inducible polypeptides stabilize trimeric photosystem I complex under high light conditions in Synechocystis PCC 6803
,”
Plant Physiol.
147
,
1239
1250
(
2008
).
30.
R. A. I.
Abou-Shanab
,
J. H.
Hwang
,
Y.
Cho
,
B.
Min
, and
B.-H.
Jeon
, “
Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production
,”
Appl. Energy
88
,
3300
3306
(
2011
).
31.
Q.
Lin
and
J.
Lin
, “
Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga
,”
Bioresour. Technol.
102
,
1615
1621
(
2011
).
32.
M. J.
Griffiths
and
S. T. L.
Harrison
, “
Lipid productivity as a key characteristic for choosing algal species for biodiesel production
,”
J. Appl. Phycol.
21
,
493
507
(
2009
).
33.
L.
Rodolfi
,
G.
Chini Zittelli
,
N.
Bassi
,
G.
Padovani
,
N.
Biondi
,
G.
Bonin
, and
M. R.
Tredici
, “
Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
,”
Biotechnol. Bioeng.
102
,
100
112
(
2009
).
34.
G.
Knothe
, “
Improving biodiesel fuel properties by modifying fatty ester composition
,”
Energy Environ. Sci.
2
,
759
766
(
2009
).
35.
J.
Ohlrogge
and
J.
Browse
, “
Lipid biosynthesis
,”
Plant Cell
7
,
957
970
(
1995
).
36.
M. A.
Cobelas
and
J. Z.
Lechado
, “
Lipids in microalgae: A review. I
,”
Biochem. Grasasy Aceites
40
,
118
145
(
1989
).
37.
R. O.
Dunn
, “
Cold weather properties and performance of biodiesel
,” in
The Biodiesel Handbook
, edited by
G.
Kanthe
,
J.
van Gerpen
, and
J.
Krahl
(
AOCS Press
,
Champaign, IL, USA
,
2005
).
38.
E. D.
Zhang
,
B.
Wang
,
Q. H.
Wang
,
S. B.
Zhang
, and
B. D.
Zhao
, “
Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment
,”
Bioresour. Technol.
99
,
3787
3793
(
2008
).
39.
A.
Ruiz-Marin
,
L. G.
Mendoza-Espinosa
, and
T.
Stephenson
, “
Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater
,”
Bioresour. Technol.
101
,
58
64
(
2010
).
40.
P. S.
Lau
,
N. F. Y.
Tam
, and
Y. S.
Wong
, “
Effect of algal density on nutrient removal from primary settled wastewater
,”
Environ. Pollut.
89
,
59
66
(
1995
).
You do not currently have access to this content.