Accurate short term forecasting of photovoltaic (PV) systems output has a great significance for fast development of PV parks in South-East Europe, as well as in the case of Romania. Our approach on solar radiation forecast is based on two methods: autoregressive integrated moving average and artificial neural network. We have analyzed the daily solar irradiation variability and defined four synoptic situations to include the influence of cloudiness changes. Decadal variations of global solar radiation were also considered for long term forecast. The results were obtained using a database from Bucharest/Afumati Meteorological Station. We have developed an accurate forecasting model for a PV system's power output based on solar radiation forecasting results. By using complete datasets and including meteorological parameters such as cloudiness, relative humidity, air temperature, atmospheric pressure, and sunshine duration, as input for our model, we have managed to minimize forecasting errors and to obtain a more accurate forecast of the power output for the analyzed demo PV system.

1.
J.
Ebinnger
and
W.
Vengara
,
Climate Impacts on Energy Systems: Key Issues for Energy Sector Adaptation
(
The World Bank Press
,
2011
).
2.
S.
Pelland
,
G.
Galanis
, and
G.
Kallos
, “
Solar and photovoltaic forecasting through postprocessing of the Global Environmental Multiscale numerical weather prediction model
,”
Prog. Photovoltaics: Res. Appl.
21
,
284
296
(
2013
).
3.
G.
Reikard
, “
Predicting solar radiation at high resolutions: A comparison of time series forecasts
,”
Sol. Energy
83
,
342
349
(
2009
).
4.
M. A.
Behrang
,
E.
Assareh
,
A.
Ghanbarzadeh
, and
A. R.
Noghrehabadi
, “
The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data
,”
Sol. Energy
84
,
1468
1480
(
2010
).
5.
C.
Paoli
,
C.
Voyant
,
M.
Muselli
, and
M.
Nivet
, “
Forecasting of preprocessed daily solar radiation time series using neural networks
,”
Sol. Energy
84
,
2146
2160
(
2010
).
6.
A.
Mellit
and
A. M.
Pavan
, “
A 24-h forecast of solar irradiation using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy
,”
Sol. Energy
84
,
807
821
(
2010
).
7.
L.
Martın
,
L. F.
Zarzalejo
,
J.
Polo
,
A.
Navarro
,
R.
Marchante
, and
M.
Cony
, “
Prediction of global solar irradiation based on time series analysis: Application to solar thermal power plants energy production planning
,”
Sol. Energy
84
,
1772
1781
(
2010
).
8.
V.
Lara-Fanego
,
J. A.
Ruiz-Arias
,
D.
Pozo-Vazquez
,
F. J.
Santos-Alamillos
, and
J.
Tovar-Pescador
, “
Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)
,”
Sol. Energy
86
,
2200
2217
(
2012
).
9.
H.
Breitkreuz
,
M.
Schroedter-Homscheidt
,
T.
Holzer-Popp
, and
S.
Dech
, “
Short-range direct and diffuse irradiance forecasts for solar energy applications based on aerosol chemical transport and numerical weather modeling
,”
J. Appl. Meteorol. Climatol.
48/9
,
1766
1779
(
2009
).
10.
R.
Perez
,
S.
Kivalov
,
J.
Schlemmer
,
K.
Hemker
, Jr.
,
D.
Renne
, and
T. E.
Hoff
, “
Validation of short and medium term operational solar radiation forecasts in the US
,”
Sol. Energy
84
,
2161
2172
(
2010
).
11.
E.
Lorenz
,
D.
Heinemann
, and
A.
Hammer
, “
Short-term forecasting of solar radiation based on satellite data
,” in
Proceedings of EUROSUN, Freiburg, Germany
, 2004.
12.
D.
Heinemann
,
E.
Lorenz
, and
M.
Girodo
, “
Forecasting of solar radiation
,” in
Solar Energy Resource Management for Electricity Generation from Local Level to Global Scale
, edited by
E. D.
Dunlop
,
L.
Wald
, and
M.
Suri
(
Nova Science Publishers
,
Hauppauge
,
2006
).
13.
L. A.
Fernandez-Jimenez
,
A.
Muñoz-Jimenez
,
A.
Falces
,
M.
Mendoza-Villena
,
E.
Garcia-Garrido
,
P. M.
Lara-Santillan
,
E.
Zorzano-Alba
, and
P. J.
Zorzano-Santamaria
, “
Short-term power forecasting system for photovoltaic plants
,”
Renewable Energy
44
,
311
317
(
2012
).
14.
M. G.
Kratzenberg
,
S.
Colle
, and
H. G.
Beyer
, “
Solar radiation prediction based on the combination of a numerical weather prediction model and a time series prediction model
,” in
Proceedings of the EUROSUN 2008
, Lisbone, Portugal, 2008.
15.
Y.
Dazhi
,
P.
Jirutitijaroen
, and
W. M.
Walsh
, “
Hourly solar radiation forecast including cloud cover effects using time series analysis
,”
Sol. Energy
86
(
12
),
3531
3543
(
2012
).
16.
G. E. P.
Box
,
G. M.
Jenkins
, and
G. C.
Reinsel
,
Time Series Analysis: Forecasting and Control
(
Prentice Hall, Inc.
,
Englewood Cliffs, New Jersey
,
1994
).
17.
D. E.
Rumelhart
,
J. L.
McClelland
, and
PDP Research Group
,
Parallel Distributed Processing
(
The MIT Press
,
Massachusetts
,
1986
).
18.
S.
Haykin
,
Neural Networks: A Comprehensive Foundation
(
Macmillan College Publishing
,
New York
,
1994
).
19.
B.
Bartók
, “
Changes in solar energy availability for south-eastern Europe with respect to global warming
,”
Phys. Chem. Earth
35
,
63
69
(
2010
).
20.
B.
Bartok
,
L.
Fara
,
M. A.
Galbeaza
, and
A.
Diaconu
, “
Estimation of a BIPV system performance based on solar radiation forecast models
,” in
Proceedings of EUROSUN 2012
, edited by
B.
Frankovic
and
J.-O.
Dalenback
(
2012
).
21.
L.
Fara
,
S.
Fara
, and
A.-M.
Dabija
, “
First results of a BIPV project in Romania
,” in
Proceedings of PLEA 2008 Conference
, Dublin, Ireland (
2008
).
22.
L.
Fara
,
M. R.
Mitroi
, and
D.
Comaneci
, “
Implementation of a demonstrative BIPV system – experiments and monitoring
,”
PASOR Project Phase Report
,
2009
.
23.
A.
Linares-Rodríguez
,
J. A.
Ruiz-Arias
,
D.
Pozo-Vázquez
, and
J.
Tovar-Pescador
, “
Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks
,”
Energy
36
,
5356
5365
(
2011
).
24.
E.
Lorenz
,
J.
Remund
,
S. C.
Müller
,
W.
Traunmüller
,
G.
Steinmaurer
,
D.
Pozo
,
J. A.
Ruiz-Arias
,
V.
Lara Fanego
,
L.
Ramirez
,
M. G.
Romeo
,
C.
Kurz
,
L. M.
Pomares
, and
C. G.
Guerrero
, “
Benchmarking of different approaches to forecast solar irradiance
,” in
24th European Photovoltaic Solar Energy Conference
, Hamburg, Germany, 21–25 September 2009, pp.
4199
4208
.
You do not currently have access to this content.