Island communities require in-detail mapping of resources available for exploitation for energy purposes, since infrastructure and connections to the mainland present, in most cases, a weak point of the island energy supply. As the present energy supply on Croatian islands relies mostly on fossil fuels and electricity from the mainland, it becomes obvious that exploitation of renewable energy sources is the only solution that leads towards self-sufficiency and sustainable development. In order to design a self-sufficient and sustainable island, three major technological changes are needed: integration of renewable energy sources alongside with energy savings and improvements in energy efficiency in the energy production. Analyses for several other Croatian islands have been performed using Renewislands/ADEG methodology in order to assess all possible outcomes. The scenarios in these cases have shown that islands can become self-sufficient through combining renewable technologies and energy storage systems. Energy storage systems will be crucial for achieving desired objectives in terms of energy independence from the mainland and in general import of fossil fuels. The analysis conducted for the island of Hvar will result in creation of several scenarios which will clearly point out the favorable solutions for improvement of both security of energy supply and covering the majority of energy demand with renewable energy sources and storage technologies. Also, when talking about implementation of renewable technologies on island of Hvar, an optimal mix of technologies must be applied in order to avoid excess costs and to achieve minimal impact on environment in terms of visual pollution.

1.
H.
Lund
and
B. V.
Mathiesen
,
Energy
34
(
5
),
524
(
2009
).
2.
R.
Segurado
,
G.
Krajačić
,
N.
Duić
, and
L.
Alves
,
Appl. Energy
88
(
2
),
466
(
2011
).
3.
J. B.
Garrison
and
M. E.
Webber
,
J. Renewable Sustainable Energy
3
,
043101
(
2011
).
4.
H.
Beltran
,
I.
Etxeberria-Otadui
,
E.
Belenguer
, and
P.
Rodriguez
,
J. Renewable Sustainable Energy
4
,
063101
(
2012
).
5.
H.
Lund
,
A. A.
Andersen
,
P. A.
Østergaard
,
B. V.
Mathiesen
, and
D.
Connolly
,
Energy
42
(
1
),
96
(
2012
).
6.
S. M.
Hakimi
and
S. M.
Moghaddas-Tafreshi
,
J. Renewable Sustainable Energy
4
,
042702
(
2012
).
7.
S. M.
Hakimi
,
S. M.
Moghaddas-Tafreshi
, and
H.
HassanzadehFard
,
J. Renewable Sustainable Energy
3
,
062701
(
2011
).
8.
European Renewable Energy Council, “
RE-thinking 2050: A 100% renewable energy vision for the European Union
,”
2010
.
10.
G.
Krajačić
,
N.
Duić
, and
M. G.
Carvalho
,
Int. J. Hydrogen Energy
34
(
16
),
7015
(
2009
).
11.
N.
Duić
and
M. G.
Carvalho
,
Renewable Sustainable Energy Rev.
8
(
4
),
383
(
2004
).
12.
A.
Busuttil
,
G.
Krajačić
, and
N.
Duić
,
Int. J. Hydrogen Energy
33
(
16
),
4235
(
2008
).
13.
D.
Katsaprakakis
,
N.
Papadakis
,
G.
Kozirakis
,
Y.
Minadakis
,
D.
Christakis
, and
K.
Kondaxakis
,
Appl. Energy
86
(
4
),
516
(
2009
).
14.
L.
Ntziachristos
,
C.
Kouridis
,
Z.
Samaras
, and
K.
Pattas
,
Renewable Energy
30
(
10
),
1471
(
2005
).
15.
A. P. F.
Andaloro
,
R.
Salomone
,
L.
Andaloro
,
N.
Briguglio
, and
S.
Sparacia
,
Renewable Energy
47
,
135
(
2012
).
16.
C.
Bueno
and
J. A.
Carta
,
Renewable Sustainable Energy Rev.
10
(
4
),
312
(
2006
).
17.
J. P.
Praene
,
M.
David
,
F.
Sinama
,
D.
Morau
, and
O.
Marc
,
Renewable Sustainable Energy Rev.
16
(
1
),
426
(
2012
).
18.
B. V.
Mathiesen
,
H.
Lund
, and
K.
Karlsson
,
Appl. Energy
88
(
2
),
488
(
2011
).
19.
G.
Krajačić
,
N.
Duić
, and
M. G.
Carvalho
,
Appl. Energy
88
(
2
),
508
(
2011
).
20.
G.
Krajačić
,
N.
Duić
,
Z.
Zmijarević
,
B. V.
Mathiesen
,
A. A.
Vučinić
, and
M. G.
Carvalho
,
Appl. Therm. Eng.
31
(
13
),
2073
(
2011
).
21.
B.
Ćosić
,
G.
Krajačić
, and
N.
Duić
,
Energy
48
(
1
),
80
(
2012
).
22.
Energy Institute Hrvoje Požar, Energy management on island of Hvar, study for FP7 Concerto Solution Project, Contract No. FP7EN/239285/“SOLUTION,”
2012
.
23.
See www.meteonorm.com/pages/en/meteonorm.php for “METEONORM – Global Meteorological Database for Engineers, Planners and Education.”
24.
Aalborg University
,
EnergyPLAN: Advanced Energy System Computer Model
(
Aalborg University
,
Denmark, Aalborg
,
2012
), www.energyplan.eu.
25.
H.
Lund
,
N.
Duić
,
G.
Krajačić
, and
M. G.
Carvalho
,
Energy
32
(
6
),
948
(
2007
).
26.
B.
Ćosić
,
N.
Markovska
,
G.
Krajačić
,
V.
Taseska
, and
N.
Duić
,
Appl. Therm. Eng.
43
,
158
(
2012
).
27.
A.
Le-Ngoch
and
S. C.
Bhattacharyya
,
Energy
36
(
10
),
5975
(
2011
).
28.
W.
Liu
,
H.
Lund
, and
B. V.
Mathiesen
,
Energy
36
(
8
),
4753
(
2011
).
29.
H.
Lund
and
W.
Kempton
,
Energy Policy
36
(
9
),
3578
(
2008
).
30.
V.
Badescu
,
J. Renewable Sustainable Energy
3
,
023102
(
2011
).
31.
T.
Logenthiran
and
D.
Srinivasan
,
J. Renewable Sustainable Energy
4
,
053119
(
2012
).
32.
You do not currently have access to this content.