This paper examines the relationship between renewable energy consumption and economic efficiency. For this reason, conditional Data Envelopment Analysis estimators alongside with nonparametric regressions are applied in a sample of 25 European countries for the year 2010 with emphasis given to Eastern and Western European countries. Our results reveal that renewable energy consumption has a positive effect on countries' economic efficiency for lower consumption levels while for higher levels, the analysis reveals mixed effects, which are also subject to regional disparities. Finally, it appears that the effect of renewable energy consumption on countries’ economic efficiency depends also on countries’ specific regional characteristics as well as on the environmental policies adopted.

1.
P.
Sadorsky
, “
Renewable energy consumption, CO2 emissions and oil prices in the G7 countries
,”
Energy Econ.
31
,
456
462
(
2009
).
2.
N.
Apergis
and
J. E.
Payne
, “
Renewable energy consumption and economic growth: Evidence from a panel of OECD countries
,”
Energy Policy
38
,
656
660
(
2010
).
3.
N.
Bowden
and
J. E.
Payne
, “
Sectoral analysis of the causal relationship between renewable and non-renewable energy consumption and real output in the US
,”
Energy Sources
5
(
4
),
400
408
(
2010
).
4.
C.
Daraio
and
L.
Simar
, “
Introducing environmental variables in nonparametric frontier models: A probabilistic approach
,”
J. Prod. Anal.
24
,
93
121
(
2005
).
5.
C.
Daraio
and
L.
Simar
,
Advanced Robust and Nonparametric Methods in Efficiency Analysis
(
Springer Science
,
New York
,
2007
).
6.
C.
Daraio
and
L.
Simar
, “
Conditional nonparametric frontier models for convex and nonconvex technologies: A unifying approach
,”
J. Prod. Anal.
28
,
13
32
(
2007
).
7.
L.
Simar
and
P. W.
Wilson
, “
Sensitivity analysis of efficiency scores: How to bootstrap in non parametric frontier models
,”
Manage. Sci.
44
,
49
61
(
1998
).
8.
L.
Simar
and
P. W.
Wilson
, “
A general methodology for bootstrapping in non-parametric frontier models
,”
J. Appl. Stat.
27
,
779
802
(
2000
).
9.
L.
Simar
and
P. W.
Wilson
, “
Statistical interference in nonparametric frontier models: Recent developments and perspectives
,” in
The Measurement of Productive Efficiency and Productivity Change
, edited by
H.
Fried
,
C. A. K.
Lovell
, and
S.
Schmidt
(
Oxford University Press
,
New York
,
2008
).
10.
K.
Boubaker
, “
Renewable energy in upper North Africa: Present versus 2025-horizon perspectives optimizing using a Data Envelopment Analysis (DEA) framework
,”
Renewable Energy
43
,
364
369
(
2012
).
11.
J. R. S.
Cristobal
, “
A multi criteria data envelopment analysis model to evaluate the efficiency of the Renewable Energy technologies
,”
Renewable Energy
36
,
2742
2746
(
2011
).
12.
M. E.
Lins
,
L. B.
Oliveira
,
A. C. M.
da Silva
,
L. P.
Rosa
, and
A. O.
Pereira
, Jr.
, “
Performance assessment of alternative energy resources in Brazilian power sector using data envelopment analysis
,”
Renewable Sustainable Energy Rev.
16
,
898
903
(
2012
).
13.
T.
Chien
and
J. L.
Hu
, “
Renewable energy and macroeconomic efficiency of OECD and non-OECD economies
,”
Energy Policy
35
,
3606
3615
(
2007
).
14.
J.
Domac
,
K.
Richards
, and
S.
Risovic
, “
Socio-economic drivers in implementing bioenergy projects
,”
Biomass Bioenergy
28
,
97
106
(
2005
).
15.
S.
Awerbuch
and
R.
Sauter
, “
Exploiting the oil-GDP effect to support renewables deployment
,”
Energy Policy
34
,
2805
2819
(
2006
).
16.
G. E.
Halkos
and
N. G.
Tzeremes
, “
Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies
,”
Ecologic. Econ.
70
,
1354
1362
(
2011
).
17.
T.
Chien
and
J. L.
Hu
, “
Renewable energy: An efficient mechanism to improve GDP
,”
Energy Policy
36
,
3045
3052
(
2008
).
18.
P.
Sadorsky
, “
Renewable energy consumption and income in emerging economies
,”
Energy Policy
37
,
4021
4028
(
2009
).
19.
T. H.
Chang
,
C. M.
Huang
, and
M. C.
Lee
, “
Threshold effect of the economic growth rate on the renewable energy development from a change in energy price: Evidence from OECD countries
,”
Energy Policy
37
,
5796
5802
(
2009
).
20.
N.
Apergis
and
J. E.
Payne
, “
Renewable energy consumption and growth in Eurasia”
Energy Econ.
32
,
1392
1397
(
2010
).
21.
I.
Ozturk
, “
A literature survey on energy-growth nexus
,”
Energy Policy
38
,
340
349
(
2010
).
22.
I.
Ozturk
,
A.
Aslan
, and
H.
Kalyoncu
, “
Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries
,”
Energy Policy
38
,
4422
4428
(
2010
).
23.
N.
Apergis
and
J. E.
Payne
, “
Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model
,”
Energy Econ.
34
,
733
738
(
2012
).
24.
C. T.
Tugcu
,
I.
Ozturk
, and
A.
Aslan
, “
Renewable and non-renewable energy consumption and economic growth relationship: Evidence from G7 countries
,”
Energy Econ.
34
,
1942
1950
(
2012
).
25.
J. A.
Hatemi
, “
Asymmetric causality tests with an application
,”
Empir. Econ.
43
(
1
),
447
456
(
2012
).
26.
I.
Ozturk
and
A.
Acaravci
, “
The causal relationship between energy consumption and GDP in Albania, Bulgaria, Hungary and Romania: Evidence from ARDL bound testing approach
,”
Appl. Energy
87
,
1938
1943
(
2010
).
27.
I.
Ozturk
and
A.
Acaravci
, “
CO2 emissions, energy consumption and economic growth in Turkey
,”
Renewable Sustainable Energy Rev.
14
,
3220
3225
(
2010
).
28.
I.
Ozturk
and
A.
Acaravci
, “
Electricity consumption and real GDP causality nexus: Evidence from ARDL bounds testing approach for 11 MENA countries
,”
Appl. Energy
88
,
2885
2892
(
2011
).
29.
G. E.
Halkos
and
N. G.
Tzeremes
, “
Electricity generation and economic efficiency: Panel data evidence from World and East Asian Countries
,”
Global Econ. Rev.
38
,
251
263
(
2009
).
30.
A. N.
Menegaki
, “
Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis
,”
Energy Econ.
33
,
257
263
(
2011
).
31.
E.
Yildirim
,
S.
Sarac
, and
A.
Aslan
, “
Energy consumption and economic growth in the USA: Evidence from renewable energy
,”
Renewable Sustainable Energy Rev.
16
,
6770
6774
(
2012
).
32.
G. E.
Halkos
and
N. G.
Tzeremes
, “
Measuring regional economic efficiency: The case of Greek prefectures
,”
Ann. Reg. Sci.
45
,
603
632
(
2010
).
33.
G. E.
Halkos
and
N. G.
Tzeremes
, “
The effect of access to improved water sources and sanitation on economic efficiency: The case of sub-Saharan African countries
,”
S. Afr. J. Econ.
80
,
246
263
(
2012
).
34.
M.
Feldstein
and
D.
Foot
, “
The other half of gross investment: Replacement and modernization
,”
Rev. Econ. Stat.
53
,
49
58
(
1971
).
35.
L.
Epstein
and
M.
Denny
, “
Endogenous capital utilization in a short run production model
,”
J. Econometr.
12
,
189
207
(
1980
).
36.
I.
Nadiri
and
I.
Prucha
, “
Estimation of the depreciation rate of physical and R&D capital in the U.S. total manufacturing sector
,”
Econom. Inquiry
,
34
,
43
56
(
1996
).
37.
X. P.
Zhang
,
X. M.
Cheng
,
J. H.
Yuan
, and
X. J.
Gao
, “
Total-factor energy efficiency in developing countries
,”
Energy Policy
39
,
644
650
(
2011
).
38.
M. J.
Farrell
, “
The measurement of productive efficiency
,”
J. R. Stat. Soc. Ser. A (Stat. Soc.)
120
,
253
281
(
1957
).
39.
A.
Charnes
,
W. W.
Cooper
, and
E.
Rhodes
, “
Measuring the efficiency of decision making units
,”
Eur. J. Oper. Res.
2
,
429
444
(
1978
).
40.
R. D.
Banker
,
A.
Charnes
, and
W. W.
Cooper
, “
Some models for estimating technical and scale inefficiencies in data envelopment analysis
,”
Manage. Sci.
30
(
9
),
1078
1092
(
1984
).
41.
D.
Derpin
,
L.
Simar
, and
H.
Tulkens
, “
Measuring labor efficiency in post offices
,” in
The Performance of Public Enterprises: Concepts and Measurement
, edited by
M.
Marchand
,
P.
Pestieau
, and
H.
Tulkens
, (
North-Holland
,
Amsterdam
,
1984
).
42.
B.
Efron
, “
Bootstrap methods: Another look at the jacknife
,”
Ann. Stat.
7
,
1
26
(
1979
).
43.
R. W.
Shephard
,
Theory of Cost and Production Function
(
Princeton University Press
,
Princeton
,
1970
).
44.
L.
Simar
and
P. W.
Wilson
, “
Estimation and inference in two-stage, semi-parametric models of productive efficiency
,”
J. Econometr.
136
,
31
64
(
2007
).
45.
L.
Simar
and
P. W.
Wilson
, “
Two-stage DEA: Caveat emptor
,”
J. Prod. Anal.
36
,
205
218
(
2011
).
46.
Y.
Fan
,
Q.
Li
, and
A.
Weersink
, “
Semiparametric estimation of stochastic production frontier models
,”
J. Bus. Econ. Stat.
14
,
460
468
(
1996
).
47.
A.
Kneip
and
L.
Simar
, “
A general framework for frontier estimation with panel data
,”
J. Prod. Anal.
7
,
187
212
(
1996
).
48.
A. L.
Johnson
and
T.
Kuosmanen
, “
One-stage estimation of the effects of operational conditions and practices on productive performance: Asymptotically normal and efficient, root-n consistent StoNEZD method
,”
J. Prod. Anal.
36
,
219
230
(
2011
).
49.
A. L.
Johnson
and
T.
Kuosmanen
, “
One-stage and two-stage DEA estimation of the effects of contextual variables
,”
Eur. J. Oper. Res.
220
,
559
570
(
2012
).
50.
T.
Kuosmanen
and
M.
Kortelainen
, “
Stochastic non-smooth envelopment of data: Semi-parametric frontier estimation subject to shape constraints
,”
J. Prod. Anal.
38
,
11
28
(
2012
).
51.
L.
Bădin
,
C.
Daraio
, and
L.
Simar
, “
Optimal bandwidth selection for conditional efficiency measures: A data-driven approach
,”
Eur. J. Oper. Res.
201
,
633
640
(
2010
).
52.
S. O.
Jeong
,
B. U.
Park
, and
L.
Simar
, “
Nonparametric conditional efficiency measures: Asymptotic properties
,”
Ann. Operat. Res.
173
,
105
122
(
2010
).
53.
L.
Simar
and
A.
Vanhems
, “
Probabilistic characterization of directional distances and their robust versions
,”
J. Econometr.
166
,
342
354
(
2012
).
54.
G. E.
Halkos
and
N. G.
Tzeremes
, “
A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions
,”
Eur. J. Oper. Res.
227
,
182
189
(
2013
).
55.
E. A.
Nadaraya
, “
On estimating regression
,”
Theor. Probab. Appl.
9
,
141
142
(
1964
).
56.
G. S.
Watson
, “
Smoothed regression analysis
,”
Sankhya, Ser. A
26
,
359
372
(
1964
).
57.
P.
Hall
,
J. S.
Racine
, and
Q.
Li
, “
Cross-validation and the estimation of conditional probability densities
,”
J. Am. Stat. Assoc.
99
,
1015
1026
(
2004
).
You do not currently have access to this content.