Compared with traditional Z-source and quasi-Z-source inverter, switched-inductor quasi-Z-source has higher booster multiple, lower capacitance stress, and higher conversion efficiency. Therefore, it is very suitable for grid-connected photovoltaic power generation system. This paper analyzes the voltage boosting theory of the switched-inductor quasi-Z-source inverter which is applied to grid-connected photovoltaic power generation system. For the imbalanced power grid voltage sag situation, this paper puts forward a low voltage ride-through (LVRT) control strategy. System realizes the unity power factor running and has a good LVRT ability under imbalanced power grid voltage sag. At last, the simulation and experimental results are shown to verify the correctness of the control method.

1.
A. F.
Zobaa
and
C.
Cecati
, in
International Symposium on SPEEDAM
, Taormina, Italy,
2006
.
2.
J. M.
Carrasco
,
L. G.
Franquelo
,
Bialasiewicz
 et al.,
IEEE Trans. Ind. Electron.
53
(
4
),
1002
1016
(
2006
).
3.
S. T.
Yang
,
X. P.
Ding
, and
F.
Zhang
,
Proc. CSEE
28
(
17
),
112
118
(
2008
).
4.
F. Z.
Peng
,
IEEE Trans. Ind. Appl.
39
(
2
),
504
516
(
2003
).
5.
Y.
Li
,
J.
Anderson
,
F. Z.
Peng
 et al., in
IEEE Applied Power Electronics Conference
(IEEE,
2009
), pp.
918
924
.
6.
Y.
Li
,
F. Z.
Peng
,
J. C.
Rivera
 et al., in
IEEE Energy Conversion Congress and Exposition
(IEEE,
2010
), pp.
3187
3194
.
7.
J.
Anderson
and
F. Z.
Peng
, in
IEEE Power Electronics Specialists Conference
(IEEE,
2008
), pp.
2743
2749
.
8.
M.-K.
Nguyen
,
Y.-C.
Lim
, and
G.-B.
Cho
,
IEEE Trans. Power Electron.
26
(
11
),
3183
3191
(
2011
).
9.
W.
Jinbao
,
Low Voltage Apparatus.
2012
(
17
):
26
30
 + 63.
10.
Z.
Fei
,
Z.
Junjun
, and
D.
Mingchang
,
Autom. Electr. Power Syst.
2012
(
22
),
19
24
.
11.
M.
Shen
,
J.
Wang
,
A.
Joseph
 et al.,
IEEE Trans. Ind. Appl.
42
(
3
),
770
778
(
2006
).
12.
M.
Shen
,
W.
Jin
, and
F. Z.
Peng
, in
Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting
(IEEE,
2004
), Vol.
1
, pp.
142
147
.
13.
S.
Zeliang
,
D.
Na
,
G.
Yuhua
 et al.,
Electr. Power Autom. Equip.
28
(
9
),
27
30
(
2008
).
14.
S.
Zeliang
,
T.
Jian
,
G.
Yuhua
 et al.,
IEEE Trans. Power Electron.
22
(
5
),
1797
1805
(
2007
).
15.
L.
Tingyuan
,
Z.
Jianyong
,
Y.
Jun
 et al.,
Telecom Power Tech.
26
(
5
),
1
8
(
2009
).
16.
M. S.
Alam
and
A. T.
Alouani
,
J. Renewable Sustainable Energy
2
,
043102
(
2010
).
17.
A.
Daoud
and
A.
Midoun
,
Int. Rev. Elect. Eng. (IREE)
5
(
2
),
514
520
(
2010
).
18.
N.
Femia
,
G.
Petrone
,
G.
Spagnuolo
 et al.,
IEEE Trans. Power Electron.
20
(
4
),
963
973
(
2005
).
19.
L.
Qiuhua
,
Z.
Lin
,
L.
Qiang
 et al.,
Electr. Power Autom. Equip.
2008
(
7
),
21
25
.
20.
W.
Libo
,
Z.
Zhengming
,
L.
Jianzheng
 et al.,
Proc. CSEE
26
(
6
),
73
77
(
2006
).
21.
S.
Nema
,
R. K.
Nema
, and
G.
Agnihotri
,
J. Renewable Sustainable Energy
3
,
012701
(
2011
).
22.
W.
Rongjong
and
W.
Wenhung
,
IEEE Trans. Circuits Syst.
55
(
3
),
53
964
(
2008
).
23.
W.
Haining
,
S.
Jianhui
,
D.
Ming
 et al.,
Proc. CSEE
27
(
2
),
75
79
(
2007
).
24.
A.
Marinopoulos
,
F.
Papandrea
,
M.
Reza
,
S.
Norrga
, and
F.
Spertino
, in
IEEE International Conference on Power Technology, Trondheim
(
2011
), pp.
1
8
.
25.
C. H.
Benz
,
W. T.
Franke
, and
F. W.
Fuchs
, in
14th International Power Electronics and Motion Control Conference (EPE/PEMC)
(
2010
), pp.
T12
13
T12
20
.
You do not currently have access to this content.