Solar chimney power plant (SCPP) with a long life span is a promising large-scale solar thermal utilization technology. This paper performs an economic analysis for the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP) in Northwest China. Cash flows are influenced by many factors including the investment, the payback period, the inflation rate, and the sale price of solar electricity. The techno-economic analyses of the CSCPPs and SSCPPs are performed taking Lanzhou, China as a case study. The results show that the SCPP investment is influenced by both its configuration and the material price, and the SSCPP is more cost-effective than the CSCPP during the system life span. In addition, the SCPP with large power capacity holds good competitiveness with the conventional fossil fuel combustion plants. The economic evaluation of building SCPPs in Northwest China is of high significance considering the local abundant solar radiation, favorable government policy, and under-developing economics.

1.
S. J.
Wang
,
P.
Yuan
,
D.
Li
, and
Y. H.
Jiao
,
Renewable Sustainable Energy Rev.
15
(
1
),
91
(
2011
).
2.
W.
Liu
,
H.
Lund
,
B. V.
Mathiesen
, and
X. L.
Zhang
,
Appl. Energy
88
(
2
),
518
(
2011
).
3.
X. Y.
Yan
and
R. J.
Crookes
,
Prog. Energy Combust. Sci.
36
(
6
),
651
(
2010
).
4.
APCO Worldwide, available at http://www.apcoworldwide.com/content/PDFs/Chinas_12th_Five-Year_Plan.pdf; November 11, 2011 (
2010
).
5.
E.
Bilgen
and
J.
Rheault
,
Sol. Energy
79
(
5
),
449
(
2005
).
6.
F.
Cao
,
L.
Zhao
, and
L. J.
Guo
,
Energy Convers. Manage.
52
(
6
),
2360
(
2011
).
7.
Y. J.
Dai
,
H. B.
Huang
, and
R. Z.
Wang
,
Renewable Energy
28
(
8
),
1295
(
2003
).
8.
J.
Pretorius
and
D.
Kroger
,
Sol. Energy
80
(
5
),
535
(
2006
).
9.
J.
Schlaich
,
The Solar Chimney: Electricity From the Sun
(
Axel Menges
,
Stuttgart
,
1995
).
10.
W.
Haaf
,
Int. J. Sol. Energy
2
,
141
(
1984
).
11.
W.
Haaf
,
K.
Friedrich
,
G.
Mayr
, and
J.
Schlaich
,
Int. J. Sol. Energy
2
,
3
(
1983
).
12.
J.
Schlaich
,
R.
Bergermann
,
W.
Schiel
, and
G.
Weinrebe
,
ASME J. Sol. Energy Eng.
127
,
117
(
2005
).
13.
M. A. D. S.
Bernardes
, Ph.D. dissertation,
Universitat Stuttgart, Germany
,
2004
.
14.
T.
Fluri
,
J.
Pretorius
,
C.
Dyk
,
T.
Backstrom
,
D.
Kroger
, and
G.
Zijl
,
Sol. Energy
83
(
3
),
246
(
2009
).
15.
T.
Fluri
and
T.
Vonbackstrom
,
Sol. Energy
82
(
11
),
999
(
2008
).
16.
C. D.
Papageorgiou
, in
Proceedings of ISES Asia-Pacific Solar Energy Conference, Gwangju, Korea, 17–20 October
(
2004
), pp.
763
772
.
17.
X. P.
Zhou
and
J.
Yang
,
Heat Transfer Eng.
30
(
5
),
400
(
2009
).
18.
X. P.
Zhou
,
J. K.
Yang
,
F.
Wang
, and
B.
Xiao
,
Renewable Sustainable Energy Rev.
13
(
4
),
736
(
2009
).
19.
J. P.
Pretorius
, Ph.D. dissertation,
University of Stellenbosch, South Africa
,
2007
.
20.
X. P.
Zhou
,
J. K.
Yang
,
J. B.
Wang
, and
B.
Xiao
,
Energy Convers. Manage.
50
(
3
),
847
(
2009
).
21.
F.
Cao
,
L.
Zhao
,
H. S.
Li
, and
L. J.
Guo
,
Appl. Therm. Eng.
50
(
1
),
582
(
2013
).
22.
National Standard for the High Quality Steel H-style Beam, GB/T-11263-2005 (in Chinese).
23.
U.S. Energy Information Administration, accessed at http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2report.htm#electric; November 11, 2011 (
1999
).
24.
PointCarbon, accessed at http://www.pointcarbon.com; November 11, 2011 (
2011
).
25.
Conversion rate for yuan and Euro, accessed at http://www.boc.cn; November 11, 2011 (
2011
).
26.
S.
Lorente
,
A.
Koonsrisuk
, and
A.
Bejan
,
Int. J. Green Energy
7
(
6
),
577
(
2010
).
27.
Z. H.
Wang
,
Z. M.
Yang
, and
Y. X.
Zhang
,
J. Renewable Sustainable Energy
4
,
031807
(
2012
).
28.
B.
Yu
and
X. L.
Yao
,
J. Renewable Sustainable Energy
4
,
031801
(
2012
).
You do not currently have access to this content.