The effect of meteorological factors on the composition and the energy recovery of the landfill gas (LFG) were evaluated in this study. Landfill gas data consisting of methane, carbon dioxide, and oxygen content as well as LFG temperature were collected from April 2009 to March 2010 along with meteorological data. The data set were, first, used to visualize the similarity by using self-organizing maps and to calculate correlation factors. Then, the data was used with ANN to further analyze the impacts of meteorological factors. In both analysis, it is seen that the most important meteorological parameter effective on LFG energy content is soil temperatures. Furthermore, ANN was found to be successful in explaining variations of methane content and temperature of LFG with correlation coefficients of 0.706 and 0.984, respectively. ANN was proved itself to be a useful tool for estimating energy recovery of the landfill gas.

1.
H. R.
Amini
and
D. R.
Reinhart
, “
Regional prediction of long-term landfill gas to energy potential
,”
Waste Manage.
31
,
2020
2026
(
2011
).
2.
W.
Qin
,
F. N.
Egolfopoulos
, and
T. T.
Tsotsis
, “
Fundamental and environmental aspects of landfill gas utilization for power generation
,”
Chem. Eng. J.
82
,
157
172
(
2001
).
3.
H. R.
Amini
,
D. R.
Reinhart
, and
K. R.
Mackie
, “
Determination of first order landfill gas modeling parameters and uncertainties
,”
Waste Manage.
32
,
305
316
(
2012
).
4.
K.
Wark
,
C. F.
Warner
, and
W. T.
Davis
,
Air Pollution: Its Origin and Control
, 3rd ed. (
Addison-Wesley Longman Inc.
,
USA
,
1998
).
5.
W. P. L.
Carter
,
Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales
, Final report to the California Air Resources Board, University of California, Riverside CA,
2009
.
6.
M. H.
Yu
,
Environmental Toxicology: Biological and Health Effects of Pollutants
, 2nd ed. (
CRC
,
USA
,
2005
).
7.
S. C.
Zou
,
S. C.
Lee
,
C. Y.
Chan
,
K. F.
Ho
,
X. M.
Wang
,
L. Y.
Chan
, and
Z. X.
Zhang
, “
Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China
,”
Chemosphere
51
,
1015
1022
(
2003
).
8.
R.
Bove
and
P.
Lunghi
, “
Electric power generation from landfill gas using traditional and innovative technologies
,”
Energy Convers. Manage.
47
,
1391
1401
(
2006
).
9.
K.
Spokas
,
J.
Bogner
,
J. P.
Chanton
,
M.
Morcet
,
C.
Aran
,
C.
Graff
,
Y.
Moreau-le Golvan
, and
I.
Hebe
, “
Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems
,”
Waste Manage.
26
,
516
525
(
2006
).
10.
A.
Saral
,
S.
Demir
, and
Ş.
Yıldız
, “
Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modeling approach
,”
J. Hazard. Mater.
168
,
338
345
(
2009
).
11.
USEPA, Sources and emissions of methane, available at http://www.epa.gov/outreach/sources.html, accessed in December,
2011
.
12.
G.
Tchobanoglous
,
H.
Theisen
, and
S. A.
Vigil
,
Integrated Solid Waste Management: Engineering Principals and Management Issues
, International ed. (
McGraw-Hill Inc
,
Singapore
1993
).
13.
K. E.
Hartz
and
R. K.
Ham
, “
Gas generation rates of landfill samples
,”
Conserv. Recycl.
5
(
2–3
),
133
147
(
1982
).
14.
C. G.
Dent
,
P.
Scott
, and
G.
Baldwin
, “
Study of landfill gas composition at three UK domestic waste disposal sites
,” in Proceedings of Energy from Landfill Gas Conference (Solihull,
1986
), pp.
130
149
.
15.
A. N.
Findikakis
,
C.
Papelis
,
C. P.
Halvadakis
, and
J. O.
Leckie
, “
Modelling gas production in managed sanitary landfills
,”
Waste Manage. Res.
6
(
2
),
115
123
(
1988
).
16.
S.
Martin
,
E.
Maranon
, and
H.
Sastre
, “
Mathematical modeling of landfill gas migration in MSW sanitary landfills
,”
Waste Manage. Res.
19
(
5
),
425
435
(
2001
).
17.
Z.
Chen
,
T.
Liu
,
Q.
Tang
, and
Y.
Zhou
, “
Evaluation and testing of landfill gas generation
,”
Acta Energ. Solaris Sin.
27
(
3
),
255
258
(
2006
).
18.
Y.
Jung
,
P.
Imhoff
, and
S.
Finsterle
, “
Estimation of landfill gas generation rate and gas permeability field of refuse using inverse modeling
,”
Transp. Porous Media
90
(
1
),
41
58
(
2011
).
19.
U.
Boltze
and
M. H.
Freitas
, “
Monitoring gas emissions from landfill sites
,”
Waste Manage. Res.
15
(
5
),
463
476
(
1997
).
20.
J. K.
Einola
,
R. H.
Kettunen
, and
J. A.
Rintala
, “
Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill
,”
Soil Biol. Biochem.
39
,
1156
1164
(
2007
).
21.
J.
Gebert
and
A.
Groengroeft
, “
Passive landfill gas emission – influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters
,”
Waste Manage.
26
,
245
251
(
2006
).
22.
P. M.
Czepiel
,
J. H.
Shorter
,
B.
Mosher
,
E.
Allwine
,
J. B.
McManus
,
R. C.
Harriss
,
C. E.
Kolb
, and
B. K.
Lamb
, “
The influence of atmospheric pressure on landfill methane emissions
,”
Waste Manage.
23
,
593
598
(
2003
).
23.
M.
Nastev
,
R.
Therrien
,
R.
Lefebvre
, and
P.
Gelinas
, “
Gas production and migration in landfills and geological materials
,”
J. Contam. Hydrol.
52
,
187
211
(
2001
).
24.
C.
Maurice
and
A.
Lagerkvist
, “
LFG emission measurements in cold climatic conditions: seasonal variations and methane emissions mitigation
,”
Cold Regions Sci. Technol.
36
,
37
46
(
2003
).
25.
M.
Christophersen
,
L.
Linderød
,
P. E.
Jensen
, and
P.
Kjeldsen
, “
Methane oxidation at low temperatures in soil exposed to landfill gas
,”
J. Environ. Qual.
29
(
6
),
1989
1997
(
2000
).
26.
J.
Park
and
H. J.
Shin
, “
Surface emission of landfill gas from solid waste landfill
,”
Atmos. Environ.
35
,
3445
3451
(
2001
).
27.
C.
Visvanathan
,
D.
Pokhrel
, and
W.
Cheimchaisri
, “
Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content, and methane concentration
,”
Water Manage. Res.
17
,
313
323
(
1999
).
28.
G.
Börjesson
and
B.
Svensson
, “
Seasonal and diurnal methane emissions from a landfıll and their regulation by methane oxidation
,”
Waste Manage. Res.
15
,
33
54
(
1997
).
29.
M. F. M.
Abushammala
,
N. E. A.
Basri
, and
A. A. H.
Kadhum
, “
Review on landfill gas emission to the atmosphere
,”
Eur. J. Sci. Res.
30
(
3
),
427
436
(
2009
).
30.
D.
Tecle
,
J.
Lee
, and
S.
Hasan
, “
Quantitative analysis of physical and geotechnical factors affecting methane emission in municipal solid waste landfill
,”
Environ. Geol.
56
(
6
),
1135
1143
(
2009
).
31.
H. K.
Özcan
,
N.
Balkaya
,
E.
Bilgili
,
G.
Demir
,
O. N.
Uçan
, and
C.
Bayat
, “
Modeling of methane distribution in a landfill using genetic algorithms
,”
Environ. Eng. Sci.
26
,
441
450
(
2009
).
32.
F.
Karaca
and
B.
Özkaya
, “
NN-LEAP: A neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site
,”
Environ. Modell. Software
21
,
1190
1197
(
2006
).
33.
B.
Özkaya
,
A.
Demir
, and
M. S.
Bilgili
, “
Neural network prediction model for the methane fraction in biogas from field-scale landfill
,”
Bioreactors
22
,
815
822
(
2007
).
34.
J.
Fellner
and
P. H.
Brunner
, “
Modeling of Leachate generation from MSW landfills by a 2-dimensional 2-domain approach
,”
Waste Manage.
30
,
2084
2095
(
2010
).
35.
TÜİK, Turkish Statistical Institute, Municipality Waste Statistics, 2010, http://www.tuik.gov.tr/PreHaberBultenleri.do?id=10750, 6 May
2012
.
36.
S.
Haykin
,
Neural Networks: A Comprehensive Foundation
, 2nd ed. (
Prentice Hall
,
USA
,
1998
).
You do not currently have access to this content.