For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is less incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. Such an optimization would in the future aid recovery of the wind turbine wake towards conditions corresponding to the undisturbed atmospheric boundary layer.

1.
S.
Frandsen
,
J. Wind Eng. Ind. Aerodyn.
39
,
251
(
1992
).
2.
S.
Frandsen
,
R.
Barthelmie
,
S.
Pryor
,
O.
Rathmann
,
S.
Larsen
,
J.
Højstrup
, and
M.
Thøgersen
,
Wind Energy
9
,
39
(
2006
).
3.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
,
Phys. Fluids
22
(
1
),
015110
(
2010
).
4.
R. B.
Cal
,
J.
Lebron
,
L.
Castillo
,
H.-S.
Kang
, and
C.
Meneveau
,
J. Environ. Sustainable Energy
2
(
1
),
013106
(
2010
).
5.
L. J.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
(
6–7
),
467
510
(
2003
).
6.
P. R.
Ebert
and
D. H.
Wood
,
Renewable Energy
18
,
513
(
1999
).
7.
P. E. J.
Vermeulen
, in
Proceedings of the Third International Symposium on Wind Energy Systems
(BHRA Fluid Engineering, England,
1980
), Vol. 45, p.
431
.
8.
L. P.
Chamorro
and
F.
Porté-Agel
,
Boundary-Layer Meteorol.
132
,
129
149
(
2009
).
9.
K.
Thomsen
and
P.
Sørensen
,
J. Wind Eng. Ind. Aerodyn.
80
,
121
(
1999
).
10.
D. J.
Milborrow
,
J. Ind. Aerodyn.
5
,
403
(
1980
).
11.
E. A.
Bossanyi
,
G. E.
Whittle
,
P. D.
Dunn
,
N. H.
Lipman
,
P. J.
Musgrove
, and
C.
Maclean
, in
Proceedings of the Third International Symposium on Wind Energy Systems
(
BHRA Fluid Engineering
,
England
,
1980
), Vol. 17–44, p.
401
.
12.
M.
Magnusson
and
A. S.
Smedman
,
J. Wind Eng. Ind. Aerodyn.
80
,
169
(
1999
).
13.
M.
Magnusson
,
J. Wind Eng. Ind. Aerodyn.
80
,
147
(
1999
).
14.
B.
Sanderse
, Energy Research Centre of the Netherlands, Report No. ECN-E-09-016,
2009
.
15.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J. G.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E. S.
Politis
, and
P. K.
Chaviaropoulos
,
Wind Energy
12
,
431
(
2009
).
16.
Y.-T.
Wu
and
F.
Porté-Agel
,
Boundary-Layer Meteorol.
138
,
345
(
2011
).
17.
W. W.
Willmarth
and
S. S.
Lu
,
J. Fluid Mech.
55
,
65
(
1972
).
18.
J. M.
Wallace
,
H.
Eckelmann
, and
R. S.
Brodkey
,
J. Fluid Mech.
54
,
39
(
1972
).
19.
D.
Poggi
and
G. G.
Katul
,
Exp. Fluids
45
,
111
121
(
2008
).
20.
Y.
Hattori
,
C.-H.
Moeng
,
H.
Suto
,
N.
Tanaka
, and
H.
Hirakuchi
,
Boundary-Layer Meteorol.
134
,
269
283
(
2010
).
21.
22.
R. A.
Antonia
and
L. W. B.
Browne
,
Fluid Dyn. Res.
2
,
3
(
1987
).
23.
K. P.
Nolan
,
E. J.
Walsh
, and
D. M.
McEligot
,
J. Fluid Mech.
658
,
310
335
(
2010
).
24.
M. R.
Raupach
,
J. Fluid Mech.
108
,
363
(
1981
).
25.
G.
Katul
,
G.
Kuhn
,
J.
Schieldge
, and
C.-I.
Hsieh
,
Boundary-Layer Meteorol.
83
,
1
(
1997
).
26.
G.
Katul
,
D.
Poggi
,
D.
Cava
, and
J.
Finnigan
,
Boundary-Layer Meteorol.
120
,
367
(
2006
).
27.
S.
Rajagopalan
and
R. A.
Antonia
,
Phys. Fluids
25
,
949
956
(
1982
).
28.
D.
Lakehal
,
M.
Fulgosi
,
S.
Banerjee
, and
G.
Yadigaroglu
,
Phys. Fluids
20
,
065101
(
2008
).
29.
V.
Roussinova
,
A.-M.
Shinneeb
, and
R.
Balachandar
,
J. Hydraul. Eng.
136
,
143
154
(
2010
).
30.
D.
Poggi
,
A.
Porporato
,
L.
Ridolfi
,
J.
Albertson
, and
G.
Katul
,
Boundary-Layer Meteorol.
111
,
565
(
2004
).
31.
B. B.
Baldocchi
and
B. A.
Hutchison
,
Boundary-Layer Meteorol.
40
,
127
(
1987
).
32.
W.
Zhu
,
R.
van Hout
, and
J.
Katz
,
J. Atmos. Sci.
64
,
2825
(
2007
).
33.
B. B.
Baldocchi
and
T. P.
Meyers
,
Boundary-Layer Meteorol.
43
,
345
(
1988
).
34.
W.
Yue
,
C.
Meneveau
,
M. B.
Parlange
,
W.
Zhu
,
R.
van Hout
, and
J.
Katz
,
Water Resour. Res.
43
,
5422
(
2007
).
35.
J. L.
Lumley
,
Phys. Fluids
10
,
855
(
1967
).
36.
L.
Chamorro
,
R.
Arndt
, and
F.
Sotiropoulos
,
Wind Energy
15
,
733
(
2012
).
37.
D.
Zhu
,
A.
van Hout
,
L.
Luznik
,
H.-S.
Kang
,
J.
Katz
, and
C.
Meneveau
,
Exp. Fluids
41
,
309
(
2006
).
38.
J. J.
Finnigan
,
Boundary-Layer Meteorol.
16
,
213
(
1979
).
39.
H.
Tennekes
and
J.
Lumley
,
A First Course in Turbulence
(
MIT
,
1971
).
40.
E. E.
Morfiadakis
,
G. L.
Glinou
, and
M. J.
Koulouvari
,
J. Wind Eng. Ind. Aerodyn.
62
,
237
(
1996
).
41.
A.
Crespo
and
J.
Hernández
,
J. Wind Eng. Ind. Aerodyn.
61
,
71
(
1996
).
42.
J.
Jiménez
,
J. C.
del Álamo
, and
O.
Flores
,
J. Fluid Mech.
505
,
179
(
2004
).
43.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
,
Environ. Res. Lett.
3
(
1
),
015004
(
2008
).
44.
G.
Comte-Bellot
and
S.
Corrsin
,
J. Fluid Mech.
48
,
273
(
1971
).
45.
H.-S.
Kang
,
S.
Chester
, and
C.
Meneveau
,
J. Fluid Mech.
480
,
129
(
2003
).
46.
S.
Emeis
,
Wind Energy
13
,
459
(
2010
).
You do not currently have access to this content.