In light of renewed interest and efforts in the development of ocean thermal energy conversion (OTEC) systems with a vision to provide mankind with a long-lasting energy resource, the potential environmental impacts of this technology should be considered from the perspective of sustainability. As an important step toward such a goal, we examine effects of OTEC effluent discharge on the physical aspects of the ocean environment near a Hawaiian Island in the North Pacific Ocean. We use modeling tools comprised of a mixing model that predicts the near field dilution of effluent plumes and a high-resolution ocean circulation model that simulates the dispersion of effluent in the far field. Numerical experiments are conducted to explore factors that influence effluent dispersal. We find that OTEC thermal resource is favorable and stable at the chosen location for the time period experimented. For a given OTEC design, the effluent discharge settles at a depth sufficiently far from the depths of discharge or intakes, and becomes dispersed quickly away from the site by highly variable ocean currents. Changes in ocean stratification and flow field are negligible for one OTEC device but are notable when multiple OTEC devices are present. These changes do not persist beyond 2 weeks after switching off OTEC activity.

1.
G. C.
Nihous
and
M.
Gauthier
, in
Marine Renewable Energy Handbook 12
, edited by
B.
Multon
(
John Wiley & Sons
,
New York
,
2011
), pp.
367
401
.
2.
L. A.
Vega
and
D. E.
Evans
, in
Proceedings of the Oceanology International '94 Conference, Brighton, UK
(Spearhead Exhibitions, Ltd.,
1994
), Vol. 5, No.
7
,
16
p.
3.
L. A.
Vega
,
Mar. Technol. Soc. J.
6
,
25
35
(
2003
).
4.
G. C.
Nihous
,
M. G.
Brown
,
M.
Gauthier
,
D.
Levrat
, and
J.
Ruer
, in
Proceedings of the 2nd International Conference on Ocean Energy (ICOE), Brest, France
(ICOE,
2008
),
9
p.
5.
L.
Meyer
,
D.
Cooper
, and
R.
Varley
, in
Proceedings of the Oceans '11 Conference, Kona, Hawaii
(IEEE,
2011
),
6
p.
6.
G. O.
Roberts
, in
Proceedings of the 4th Annual Conference on OTEC, New Orleans, Louisiana
(University of New Orleans,
1977
), pp.
7
25
.
7.
T. R.
Sundaram
,
E.
Sambuco
,
A. M.
Sinnarwalla
, and
S. K.
Kapur
, in
Proceedings of the 4th Annual Conference on OTEC, New Orleans, Louisiana
(University of New Orleans,
1977
), pp.
42
49
.
8.
E. E.
Adams
,
D. J.
Fry
,
D. H.
Coxe
, and
D. R. F.
Harleman
, R. M. Parsons Laboratory for Water Resources and Hydrodynamics Technical Report No. 250,
Massachusetts Institute of Technology
, June
1979
,
103
p.
9.
D. H.
Coxe
,
D. J.
Fry
, and
E. E.
Adams
, Energy Laboratory Report No. MIT-EL 81-049,
Massachusetts Institute of Technology
, September
1981
,
227
p.
10.
P. N.
Singarella
and
E. E.
Adams
, Energy Laboratory Report No. MIT-EL 82-018,
Massachusetts Institute of Technology
, March
1982
,
23
p.
11.
R. A.
Paddock
and
J. D.
Ditmars
, Report No. ANL/OTEC-EV-2,
Argonne National Laboratory
,
1983
,
113
p.
12.
A.
Menesguen
,
Y.
Monbet
, and
F.
Cousin
, in
Proceedings of the ASCE International Conference on Ocean Energy Recovery, Honolulu, Hawaii
(ASCE,
1989
), pp.
235
246
.
13.
D.-P.
Wang
, Report No. ANL/OTEC-EV-3,
Argonne National Laboratory
,
1985
,
46
p.
14.
G. C.
Nihous
,
J. Renewable Sustainable Energy
2
,
043104
(
2010
).
15.
Y.
Jia
,
P. H. R.
Calil
,
E. P.
Chassignet
,
E. J.
Metzger
,
J. T.
Potemra
,
K. J.
Richards
, and
A. J.
Wallcraft
,
J. Geophys. Res.
116
,
C11009
, doi: (
2011
).
16.
X.-Y.
Zhang
and
E. E.
Adams
,
J. Hydraul. Eng.
125
,
233
241
(
1999
).
17.
K. W.
Choi
and
J. H. W.
Lee
,
J. Hydraul. Eng.
133
,
804
815
(
2007
).
18.
G. H.
Jirka
,
Environ. Fluid Mech.
4
,
1
56
(
2004
).
19.
J.
Marshall
,
A.
Adcroft
,
C.
Hill
,
L.
Perelman
, and
C.
Heisey
,
J. Geophys. Res.
102
,
5753
5766
, doi: (
1997
).
20.
W. C.
Large
,
J. C.
McWilliams
, and
S. C.
Doney
,
Rev. Geophys.
32
,
363
403
, doi: (
1994
).
21.
C.-C.
Tu
and
Y.-L.
Chen
,
Weather Forecast.
26
,
280
300
(
2011
).
22.
A. F.
Shchepetkin
and
J. C.
McWilliams
,
Ocean Model.
9
,
347
404
(
2005
).
You do not currently have access to this content.