The flow control using leading-edge rotating cylinder on both two-dimensional NACA 63418 airfoil section and three-dimensional two-bladed wind turbine rotor has been studied by means of numerical simulations. For the two-dimensional NACA 63418 airfoil with a fasting spinning cylinder at the leading-edge, flow separation occurs on the pressure side of the airfoil near the clearance between rotating cylinder and stationary airfoil at small angles of attack; however, flow separation on the suction side of the airfoil can be suppressed at large angles of attack. The aerodynamic performances of the leading-edge rotation (LER) wind turbine rotors with two twisted/non-tapered blades and with two twisted/tapered blades have been studied, respectively. The result shows that the power efficiency of the LER wind turbine with twisted/non-tapered blades is superior to the uncontrolled wind turbine rotor remarkably at high tip speed ratios. The aerodynamic control effects of the leading-edge rotating cylinder have also been studied under various wind speeds. On the basis of the aerodynamic characteristics of non-tapered LER wind turbine rotor, the power output of the rotor can be optimized through adjusting the cylinder rotational speed in various wind speeds.

1.
N. M.
Bychkov
,
A. V.
Dovgal
, and
V. V.
Kozov
, “
Magnus wind turbines as an alternative to the blade ones
,”
J. Phys.: Conf. Ser.
75
,
12004
(
2007
).
2.
D. H.
Luo
,
D. G.
Huang
, and
G. Q.
Wu
,
J. Renewable Sustainable Energy
3
,
033104
(
2011
).
3.
Murakami, “
Magnus type wind power generator
,” U.S. patent 7,504,740 B2 (
2009
).
4.
A.
Iida
,
T.
Nakayama
,
C.
Kato
, and
T.
Onodera
, in
National Symposium on Power and Energy Systems
,
The Japan Society of Mechanical Engineers
,
2009
, Vol. 14, p.
201
.
5.
Y.
Imai
and
C.
Kato
,
Seisan Kenkyu
62
,
5
(
2010
) (in Japanese).
6.
G. E. H.
Mohamed
,
Flow Control: Passive, Active, And Reactive Flow Management
(
Cambridge University Press
,
Cambridge
,
2000
).
7.
V. J.
Modi
,
E.
Shih
, and
B.
Ying
,
J. Aircraft
29
,
429
(
1992
).
8.
V. J.
Modi
,
M.
Fernando
, and
T.
Yokomizo
,
AIAA J.
29
,
1400
(
1991
).
9.
V. J.
Modi
,
J. Fluids Struct.
11
,
627
(
1997
).
10.
A. Z.
Al-Garni
,
A. M.
Al-Garni
,
S. A.
Ahmed
, and
A. Z.
Sahin
,
J. Aircraft
37
,
617
(
2000
).
11.
X.
Du
and
T.
Lee
,
J. Aircraft
39
,
1079
(
2002
).
12.
L.
Chen
, “
Experimental investigation on moving surface boundary layer control
,” Master thesis (
National University of Defense Technology
, China,
2007
) (in Chinese).
13.
F.
Li
,
J. Y.
Wang
, and
E. J.
Cui
,
Acta Aerodyn. Sin.
10
,
146
(
1992
) (in Chinese).
14.
Z. Y.
Lu
, AIAA Paper No. 2000-521,
2000
.
15.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
Wiley
,
New York
,
2001
).
16.
M. O. L.
Hansen
,
J. N.
Sørensen
,
S.
Voutsinas
,
N.
Sørensen
, and
H.
Aa. Madsen
,
Prog. Aerosp. Sci.
42
,
285
(
2006
).
17.
See http://oai.cwi.nl/oai/asset/17492/17492A.pdf for “
Review of CFD for wind-turbine wake aerodynamics
.”
18.
L.
Pape
and
J.
Lecanu
,
Wind Energy
7
,
309
(
2004
).
19.
Z. Y.
Fan
,
S.
Kang
, and
J. L.
Wang
,
Acta Energ. Solaris Sin.
31
,
279
(
2010
) (in Chinese).
20.
ANSYS CFX, Release11.0, ANSYS CFX-Solver Theory Guide (
2006
).
21.
F.
Bertagnolio
,
N.
Sørensen
,
J.
Johansen
, and
P.
Fuglsang
, Report No. Risø-R-1280(EN),
Risø National Laboratory
, Denmark,
2001
.
22.
M. M.
Hand
,
D. A.
Simms
,
L. J.
Fingersh
,
D. W.
Jager
,
J. R.
Cotrell
,
S.
Schreck
, and
S. M.
Larwood
, Report No. TP-500-29955,
NREL
,
2001
.
You do not currently have access to this content.