Potable water supply/return pipe freeze problem of domestic passive solar water heaters in chilly spells is a major concern which limits the reliability of this renewable energy in building applications. Thus, a thermosiphon heat pump-piping system was introduced that pumps indoor room air heat to the outdoor section for pipe freeze protection. In the outdoor section, the hot pipe (return) has been embedded in supply (cold) tube, while the indoor section mainly consists of a metal heat absorber pipe as supplier. Room air heat is transferred from indoor to outdoor section via a naturally driven water loop due to buoyant pressure. A prototype has been fabricated and tested in a freezer with the base temperature of −22 ± 2 °C (as the outdoors ambient), while the indoor section had been placed in a separate chamber with adjustable ambient temperature in the range of 15-40 °C (simulating the indoors air). Performance tests have been conducted in draw-off, for different chamber temperatures, heat absorber tube lengths, and filled/empty water storage tank conditions. In the filled tank experiment, threshold pipe freezing was observed where chamber temperature was as low as 15.5 °C compatible with residential condition. Moreover, the heat pumping rate decreases linearly with room (chamber) temperature and approach to 10 W at pipe freeze threshold. Thermosiphon, low room air temperature performance, slight parasitic energy loss (0.25–0.45 kWh/day), low price, and its simplicity are the promising aspects of this heat pump for prevention of pipe freeze for domestic passive solar water heaters and sustainable development of solar energy in residential buildings.

1.
K.
Golić
,
V.
Kosorić
, and
A.
Krstić Furundžić
,
Renewable Sustainable Energy Rev.
15
,
1533
(
2011
).
2.
M.
Thirugnanasambandam
,
S.
Iniyan
, and
R.
Goic
,
Renewable Sustainable Energy Rev.
14
,
312
(
2010
).
3.
S. A.
Kalogirou
,
Energy Convers. Manage.
45
,
3075
(
2004
).
4.
M.
Keyanpour-Rad
,
H. R.
Haghgou
,
F.
Bahar
, and
E.
Afshar
,
Renewable Energy
20
,
333
(
2000
).
5.
S.
Jaisankar
,
J.
Ananth
,
S.
Thulasi
,
S. T.
Jayasuthakar
, and
K. N.
Sheeba
,
Renewable Sustainable Energy Rev.
15
,
3045
(
2011
).
7.
I.
Michaelides
,
P.
Eleftheriou
,
G. A.
Siamas
,
G.
Roditis
, and
P.
Kyracou
,
J. Renewable Sustainable Energy
3
,
033103
(
2011
).
8.
S.
Furbo
and
S.
Knudsen
,
Int. J. Energy Res.
30
,
955
(
2006
).
9.
A.
Hobbi
and
K.
Siddiqui
,
Sol. Energy
83
,
700
(
2009
).
10.
J.
Salasovich
,
J.
Burch
, and
G.
Barker
,
Sol. Energy
73
,
469
(
2002
).
11.
J.
Xinian
,
T.
Zhen
,
L.
Junsheng
, and
G.
Hongchuan
,
Sol. Energy
53
,
139
(
1994
).
12.
R.
Tang
,
Y.
Cheng
,
M.
Wu
,
Z.
Li
, and
Y.
Yu
,
Energy Convers. Manage.
51
,
2548
(
2010
).
13.
D. A. G.
Redpath
,
Sol. Energy
86
,
705
(
2012
).
14.
B.
Norton
and
J. E. J.
Edmonds
,
Sol. Energy
47
,
375
(
1991
).
15.
J.
Burch
,
M.
Heater
,
M.
Brandemuhl
, and
M.
Krarti
, “
Pipe freeze prevention for passive solar water heaters using a room-air natural convection loop
,” in Proceeding of the Solar 2006 Conference, Denver, Colorado, USA, 8-12 July (
2006
), pp.
387
392
.
16.
J.
Han
,
A. P. J.
Mol
, and
Y.
Lu
,
Energy Policy
38
,
383
(
2010
).
17.
Y. F.
Li
and
W. K.
Chow
,
Appl. Energy
80
,
23
(
2005
).
18.
A.
Keçebaş
,
Energy Convers. Manage.
58
,
76
(
2012
).
19.
Y.
Zhao
and
J.
Wang
, “
Five methods of prevent frostbite of pipeline about solar water heater
,” in Proceedings of ISES World Congers 2007, Solar Energy and Human Settlements, Beijing, China, 18-21 September (
2007
), pp.
2100
2103
.
20.
T.
Oreszczyn
,
S. H.
Hong
,
I.
Ridley
,
P.
Wilkinson
, and Warm Front Study Group,
Energy Build.
38
,
245
(
2006
).
21.
Z.
Ren
and
J.
Stewart
,
Energy Build.
35
,
257
(
2003
).
22.
J. P.
Holman
,
Heat Transfer
, 9th ed. (
McGraw Hill
,
Boston
,
2002
).
23.
H. F.
Naspolini
and
R.
Rüther
,
Renewable Energy
48
,
92
(
2112
).
24.
G. R.
Timilsina
,
L.
Kurdgelashvili
, and
P. A.
Narbel
,
Renewable Sustainable Energy Rev.
16
,
449
(
2012
).
You do not currently have access to this content.